CONTENTS

VOLUME I

Editor’s note .. xxiii
International Congresses on Acoustics ... xxiv
Committees ... xxv
Statistics .. xxviii
How manuscripts are indexed ... xxix

1aPLa PLENARY LECTURE

1aPLa1 Future directions in speech information processing 1
 Sadaoki Furui

1aAA SOUND FIELD FOR THE AUDIENCE, PART 1

1aAA1 Spatial impression as measured in concert and opera auditoria 5
 Michael Barron
1aAA2 Effects of front/back energy ratios of early and late reflections on listener
 envelopment ... 7
 Masayuki Morimoto and Kazuhiro Iida
1aAA3 Sound strength in concert halls I: Role of the early sound field with objective and
 subjective measures .. 9
 Jerald R. Hyde
1aAA4 Fundamental subjective attributes for sound fields from a model of auditory-brain
 system ... 11
 Yoichi Ando
1aAA5 Reflected sound field by stage floors in the concert halls: Theoretical model analysis 13
 Shinsuke Nakanishi, Kimihiro Sakagami, and Masayuki Morimoto
1aAA6 A fast room acoustical simulation algorithm based on the free path distribution 15
 Michael Vorländer
1aAA7 Relationship between subjective preference for sound fields and brain activity with
 vocal music ... 17
 Kiminori Mouri and Yoichi Ando
1aAA8 A diagnostic system measuring orthogonal factors of sound fields in a scale model
 of concert hall ... 19
 Masatugu Sakurai, Shinichi Aizawa, and Yoichi Ando
1aAA9 Absorption by seating and audience—whose figures, whose measurement method? 21
 Michael Barron and Steven Coleman

1aAO LONG-RANGE PROPAGATION FOR MEASUREMENT
 OF OCEAN PROCESSES I

1aAO1 Acoustic thermometry of ocean climate: Comparison of acoustic, altimetric and
 historical data .. 23
 Robert C. Spindel, Brian D. Dushaw, Bruce M. Howe, James A. Mercer,
 Bruce D. Cornuelle, Matthew Dzieciuch, Walter H. Munk, Peter F. Worcester,
 Arthur B. Baggeroer, Dimitris Menemenlis, Carl Wunsch, Theodore G. Birdsall,
 Kurt Metzger, Christopher Clark, John A. Colosi, Daniel Costa, and Andrew M. G. Forbes
1aAO2 Computation of T-phase coda ... 25
 Catherine de Groot-Hedlin
1aAO3 Coherence analysis of multimegamer range ocean acoustic signals 27
 Matthew Dzieciuch and the ATOC Consortium
1aAO4 Internal wave effects on single frequency coherence, matched field processing and adiabaticity ... 29
 Kevin D. Heaney, Peter N. Mikhailovsky, Herb Freese, and W. A. Kuperman

1aAO5 Modal leakage in range dependent oceans .. 31
 Arthur B. Baggeroer and Edward K. Scheer

1aAO6 Coupled-mode sound propagation in a range-dependent, moving fluid 33
 Oleg A. Godin

1aAO7 Inversion of multimegometer range acoustic data for ocean temperature 35
 Brian D. Dushaw and the ATOC group

1aAO8 Ray tracing in a turbulent, shallow water channel 37
 R. Lützen, C. Bjerrum-Niese, and L. Bjørnø

1aBV NOVEL APPROACHES TO ULTRASOUND IMAGING I

1aBV1 Flow function method for the display of streamlines on ultrasonic color flow image 39
 Shigeo Ohtsuki and Motonao Tanaka

1aBV2 Non-invasive assessment of wall shear rate (WSR) in humans by means of ultrasound .. 41
 R. S. Reneman, L. Kornet, S. K. Samijo, P. J. Brands, and A. P. G. Hoeks

1aBV3 Two-dimensional measurement of acoustic properties of tissue using 3–50 MHz ultrasound .. 43
 Hiroyuki Hachiya, Shigeo Ohtsuki, and Motonao Tanaka

1aBV4 Three-dimensional Doppler ultrasound: A tool for the 21st Century 45
 Roy W. Martin, Dan Leotta, Xian-Ning Li, and Trygve Hausken

1aBV5 Dynamic flow quantitation with spatial orientation guided digital color Doppler imaging: in vitro validation and initial in vivo experience 47
 Xiang-Ning Li, Jing-Ming Jong, Trygve Hausken, Barbrina Dunmire,
 Bryan Goldman, Daniel F. Leotta, Kirk W. Beach, and Roy W. Martin

1aBV6 Doppler monitoring of hemodialysis grafts ... 49
 Kirk W. Beach, Marla Paun, Suhail Ahmad, Curtis Plett, Robert Hickman,
 and D. Eugene Strandness, Jr.

1aBV7 Using Doppler ultrasound to examine wall vibrations and flow velocity fluctuations in arteries .. 51
 Melani Plett, Kirk Beach, Marla Paun, Kathy Brown, Barbrina Dunmire,
 and D. Eugene Strandness, Jr.

1aEA UNDERWATER ACOUSTIC CALIBRATION, METHODS, AND DEVICES

1aEA1 Towards new UK underwater acoustical measurement standards in the 21st century .. 53
 Roy C. Preston and Stephen R. Robinson

1aEA2 Acoustic calibration in reverberant environments: A survey of USRD measurement methodology .. 55
 S. E. Forsythe and P. L. Ainsleigh

1aEA3 Low-frequency calibration in water-filled pipes 57
 L. D. Luker and J. F. Zalesak

1aEA4 A comparison of hydrophone calibration by free-field reciprocity and by optical interferometry in the frequency range 200 kHz to 1 MHz 59
 Stephen P. Robinson and Roy C. Preston

1aEA5 An intercomparison of hydrophone calibrations within Europe 61
 Stephen P. Robinson, Roy C. Preston, and Geraint J. Green

1aEA6 A simple two-projector procedure for producing impedance-controlled wavefields for transducer calibration 63
 S. E. Forsythe and A. L. VanBuren

1aEA7 Underwater facility for automated experimentation and measurement 65
 Carlos Ranz-Guerra and Pedro Cobo-Parra
1aEA8 Calibration of a neutrally buoyant \(u-u \) intensity probe .. 67
 Kevin J. Bastyr and Gerald C. Lauchle
1aEA9 Calibration of a neutrally buoyant \(p-u \) intensity probe .. 69
 James A. McConnell and Gerald C. Lauchle
1aEA10 Test chamber for determining damage thresholds for high amplitude underwater
 sound exposure in animal models .. 71
 Thomas N. Lewis, Peter H. Rogers, James S. Martin, George S. McCall,
 Joey G. Lloyd, Henry P. Cotten, and Gary W. Caille
1aEA11 A free-flooding rare earth iron hexagonal transducer 73
 Rong Rong Zhao

1aMU SIGNAL MODELING IN MUSIC SYNTHESIS AND PROCESSING

1aMU1 An analysis/synthesis tool for transient signals ... 75
 Tony S. Verma and Teresa H. Y. Meng
1aMU2 Lemur: A bandwidth-enhanced sinusoidal modeling system 77
 Kelly Fitz and Lippold Haken
1aMU3 Synthesis and control of synthesis using a generalized diphane method 79
 Xavier Rodet and Adrien Lefèvre
1aMU4 Sound representation and modification with multiresolution sinusoidal models 81
 Michael Goodwin, Paolo Prandoni, and Martin Vetterli
1aMU5 Timbre morphing and interpolation based on a sinusoidal model 83
 Naotoshi Osaka
1aMU6 Tracking the frequency components of musical tones based on global waveform
 fitting ... 85
 Yinong Ding
1aMU7 Efficient synthesis model for bowed strings using a nonlinear bow-string interaction
 model ... 87
 Julius O. Smith, III

1aNSa NON-AUDITORY EFFECTS OF NOISE ON HEALTH

1aNSa0 The non-auditory health effects of noise exposure ... 89
 Lawrence Finegold
1aNSa1 Study of noise levels in a neonatal intensive care unit 91
 Chantal Laroche and Paula Fournier
1aNSa2 Trading level for number in the laboratory: Differential effects of aircraft noise on
 cardiovascular activation, annoyance, and assessment of quality of life 93
 Iris B. Mauss, Joachim Vogt, and Karl Th. Kalveram

1aNSb NOVEL APPROACHES TO NOISE CONTROL BARRIERS I

1aNSb1 Excess attenuation by reactive obstacle at noise barrier edge 95
 K. Fujiwara, C. Kim, and T. Ohkubo
1aNSb2 Jagged-edge noise barriers ... 97
 P. Menounou, I. J. Busch-Vishniac, and D. T. Blackstock
1aNSb3 Comparison of calculated and measured data for the attenuation of improved noise
 barrier ... 99
 Kohei Yamamoto
1aNSb4 Active control of traffic noise around barriers ... 101
 D. Duhamel
1aNSb5 Active noise barrier based on the boundary surface control 103
 S. Ise and H. Tachibana
1aNSb6 Traffic noise barrier overlap gap study ... 105
 Lloyd A. Herman, Craig M. Clum, and E. W. Pinckney
1aNSb7 Acoustic properties of rubber crumbs ... 107
 Jaime Pfretzschner and Rosa Mª Rodriguez

1aPAa OUTDOOR SOUND PROPAGATION I

1aPAa1 Propagation of sonic booms through the atmosphere ... 109
 Richard Raspet, Henry E. Bass, and Mark Kelly
1aPAa2 Atmospheric sound propagation near the ground ... 111
 Conny Larsson
1aPAa3 Effect of waveform distortion on sonic boom noise penetration into a flat ocean 113
 Tracie J. Ferguson and Victor W. Sparrow
1aPAa4 Sonic boom in the shadow zone .. 115
 François Coulouvrat
1aPAa5 Statistical data of excess attenuation for long range noise propagation over sea 117
 Kazuo Konishi and Zyun-iti Maekawa
1aPAa6 Sound propagation in a city composed with hexagonal periodic buildings 119
 Judicael Picaut and Jean Hardy
1aPAa7 Scale model experiments on the insertion loss of double and wide barriers 121
 Glenn J. Wadsworth and James P. Chambers
1aPAa8 Incorporation of inhomogeneous atmospheric turbulence into numerical propagation calculations .. 123
 D. Keith Wilson
1aPAa9 Nonlinear aspects on outdoor propagation of acoustic pulses produced by weak explosions .. 125
 Antonio Moreno, Carlos de la Colina, and Francisco Simón

1aPAb GENERAL TOPICS IN NONLINEAR ACOUSTICS

1aPAb1 Steady streaming from a non-compact sphere ... 127
 Ashok Gopinath and Eugene H. Trinh
1aPAb2 Acoustic radiometer demonstration .. 129
 Timothy G. Simmons, Bruce Denardo, André Larrazá, and Robert Keolian
1aPAb3 An acoustic Casimir effect .. 131
 André Larrazá, Christopher D. Holmes, Robert T. Susbilla, and Bruce Denardo
1aPAb4 Research of finite amplitude acoustic pulse propagation in thin capillary filled with viscous fluid .. 133
 Igor B. Esipov and Vladislav G. Mikhailovich
1aPAb5 Stabilization of a capillary bridge far beyond the Rayleigh-Plateau limit using active feedback and acoustic radiation pressure .. 135
 Mark J. Marr-Lyon, David B. Thiessen, and Philip L. Marston
1aPAb6 BSA-bearing drop dynamics in microgravity ... 137
 Xiaohui Chen and Robert Apfel
1aPAb7 The study of evaporation of multicomponent drops using an acousto-electric levitator .. 139
 Yibing Zheng, Robert E. Apfel, and Yuren Tian
1aPAb8 Particle separation by ultrasonic forces ... 141
 Steven M. Woodside, Martin Gröschl, Ewald Benes, James M. Piret, and Bruce D. Bowen
1aPAb9 The two-dimensional acoustic standing wave and its application in a coagulation of aerosols .. 143
 Henryka Czyż

1aPAc CAVITIES AND RESONATORS

1aPAc1 Physical effects of macrosonic standing waves in oscillating cavities 145
 Christopher C. Lawrenson, Bart Lipkens, and Thomas W. Van Doren
1aPAc2 Investigation of particle velocity field in nonlinear standing waves 147
Yuri A. Ilinskii, Bart Lipkens, and Evgenia A. Zabolotskaya

1aPAc3 Parametric excitation of a Helmholtz resonator .. 149
Wayne E. Prather, Bruce Denardo, and Richard Raspet

1aPAc4 Measurements of temperature and velocity oscillations in acoustic waves 151
Guadalupe Huelsz, Francisco López-Alquicira, and Eduardo Ramos

1aPAc5 Acoustic methods for transport properties measurements in gases 153
K. A. Gillis, J. B. Mehl, and M. R. Moldover

1aPAc6 Optical techniques for sound generation and detection in acoustic resonators 155
Giuliana Benedetto, Roberto M. Gavioso, and Renato Spagnolo

1aPAc7 Numerical study of one-dimensional resonant gas oscillation in a closed tube 157
Takeru Yano

1aPAc8 The use of a subgrid-scale quasi-stationary approximation in finite-difference time-
domain simulations to calculate the absorption by Helmholtz resonators 159
J. De Poorter and D. Botteldooren

1aPP PITCH—HIGH AND INSIDE, LOW AND AWAY

1aPP1 Pitch of pure tones measured by absolute magnitude estimation 161
Andrzej Rakowski and Andrzej Miśkiewicz

1aPP2 Regular interval stimuli with more than one pitch .. 163
William A. Yost

1aPP3 New experiments beyond the traditional Fourcin pitch range 165
Johan Raatgever, Frans A. Bilsen, and Reshma Mungra

1aPP4 Comparing the accuracy of monotic and dichotic repetition pitch 167
Frans A. Bilsen, Han H. Dols, and Johan Raatgever

1aPP5 Spectral weights for pitch judgement ... 169
Huaping Dai

1aPP6 Pitch mechanisms for unresolved harmonics I: Duration effects 171
Louise J. White and Christopher J. Plack

1aPP7 Pitch mechanisms for unresolved harmonics II: Sensitivity to envelope phase 173
Christopher J. Plack and Louise J. White

1aPP8 Co-operative behavior in the Fitzhugh-Nagumo neuron: Consequences for acoustic
perception ... 175
J. Tapson

1aPP9 The role of global processes in the perceptual cohesion of harmonic complex tones 177
Jeffrey M. Brunstrom and Brian Roberts

1aPP10 Accentuation of spectral pitch .. 179
Werner A. Deutsch

1aPP11 Perceptual segregation and pitch shifts of mistuned components in harmonic
complexes and in regular inharmonic complexes .. 181
Brian Roberts and Jeffrey M. Brunstrom

1aSA ANALYTICAL METHODS IN RADIATION AND SCATTERING

1aSA1 Algebraic aspects of acoustic scattering ... 183
Elisabeth Fournier, Yves Decanini, Antoine Folacci, and Paul Gabrielli

1aSA2 Free and forced vibration of a multi-supported string .. 185
Benjamin A. Cray and Albert H. Nuttall

1aSA3 Eigenvalues gap optimization using sensitivity in coupled acoustic-structural
systems ... 187
Walter Pauca Casas and Renato Pavanello

1aSA4 A modal approach for the acoustic and vibration response of an elastic cavity with
absorption treatments and mechanical/acoustical excitation .. 189
Noureldine Atalla and Michel A. Tournour

1aSA5 Acoustic response to large structural perturbations ... 191
Steven R. Hahn and Aldo A. Ferri
1aSA6	Synthesis of radiated sound field from a vibrating plate-strip with free edges	Kai-Ulrich Machens
1aSA7	A modal formulation for an arbitrary submerged structures in a heavy acoustic medium	Pei-Tai Chen
1aSA8	Finite difference studies of structural-acoustic interaction	U. R. Kristiansen
1aSA9	Dispersion free finite element methods for Helmholtz equation	Paul E. Barbone and Isaac Harari
1aSA10	A wave based prediction technique for vibro-acoustics: Comparison with finite element technique and experimental validation	Paul Sas, Wim Desmet, and Dirk Vandepitte

1aSC	SPEECH TECHNOLOGY AND SPEECH RECEPTION	
1aSC1	Detection and intelligibility of talkers in competing message environment	Mark A. Ericson, Robert S. Bolia, and W. Todd Nelson
1aSC2	The enhancing effect of subsequent context on perception of the sentence-initial word	Takayuki Kawashima, Makio Kashino, and Takao Sato
1aSC3	Effects of context-sensitive phonetic variation and lexical structure on the uniqueness of words	Edward T. Auer, Jr. and Lynne E. Bernstein
1aSC4	Amplitude modulation cues for perceptual voicing distinctions in noise	Brian P. Strope and Abeer A. Alwan
1aSC5	Effects of context on time-compressed speech intelligibility in older adults	Nancy E. Vaughan and Ronda K. Kasper
1aSC6	Dichotic presentation of speech signal using critical filter bank for bilateral sensorineural hearing impairment	D. S. Chaudhari and P. C. Pandey
1aSC7	A new method of sequential information analysis in consonant confusions	Tan Chin Tuan, Tong Yit Chow, and Joseph Chang
1aSC8	Aural method of speech intelligibility enhancement	Wojciech J. Majewski
1aSC9	A training system to improve the usefulness of hearing aids	Takashi Ikeda, Akira Watanabe, Mitsuaki Hino, and Yuichi Ueda
1aSC10	Voice transmission through vibration pickups	Paolo E. Giua
1aSC11	Enhancing second formant identification in speech by listeners with significant hearing loss	Peggy B. Nelson and Sally G. Revoile
1aSC12	Subjective vs. objective intelligibility of sentences in listeners with hearing loss	Kathleen M. Cienkowski, Charles E. Speaks, and Amy S. McKee
1aSC13	Effects of stimulation mode on speech recognition by cochlear implant users	Qian-Jie Fu and Robert V. Shannon
1aSC14	Continuous assessment and modeling of speech transmission quality	Martin Hansen and Birger Kollmeier
1aSC15	Coherence-based subband decomposition for efficient reverberation and noise removal in enclosed sound fields	Joaquin Gonzalez-Rodriguez and Javier Ortega-Garcia
1aSC16	Continuous digit speech recognition using subword unit HMM juncture	Jeh-Seon Youn and Kwang-Seok Hong
1aSC17	Stochastic word models for articulatory constrained speech recognition and synthesis	John Hogden, David Nix, Vincent Gracco, and Philip Rubin
1aSC18	Elliptical wave radiation from curved waveguides	ROLPHE F. FEHLMANN
1aSC19 An efficient Korean speech recognition for name and digit on communication network .. 239
 Hyeon-Gu Lee and Kwang-Seok Hong
1aSC20 A comparative study on three automatic speech recognizers in noise 241
 Chin Tuan Tan, Yit Chow Tong, Joseph S. Chang, and Lai Peng Chan
1aSC21 An implementation of recognition for Windows 95 commander 243
 Seong-kwon Lee and Soon-Hyob Kim
1aSC22 Fractal modeling of glottal waveform for high quality speech synthesis 245
 Naofumi Aoki and Tohru Ifukube
1aSC23 Interactive Korean speech recognition for a mobile robot 247
 Seok-Hyun Yoon, Jae-Young Lee, Kwang-Woo Chung, and Kwang-Seok Hong
1aSC24 Synthesis of fricative sounds using an aeroacoustic noise generation model 249
 Daniel J. Sinder, Michael H. Krane, and James L. Flanagan
1aSC25 Glottal source parameter estimation by comparison of measured signals with simulated signals .. 251
 David G. Druker, Ingo R. Titze, and Brad H. Story
1aSC26 SGP analysis of excised larynges in anechoic chamber .. 253
 P. F. Castellanos, Sang Hong, Craig Skinner, and S. A. Elder
1aSC27 Perceptual effects of spectral envelope and F0 manipulations using STRAIGHT method .. 255
 Hideki Kawahara and Reiko Akahane-Yamada
1aSC28 Modeling and synthesis of the lateral consonant /l/ .. 257
 Adrienne M. Prahler
1aSC29 End corrections in an acoustic model of the vocal tract 259
 Jianwu Dang
1aSC30 Modeling the transitory behavior of speech using a time-varying transmission-line model .. 261
 Amit S. Rane, Derrick C. Wei, Lisa E. Falkson, and Abeer A. Alwan
1aSC31 Pitch-synchronous decomposition of mixed-source speech signals 263
 Philip J. B. Jackson and Christine H. Shadle
1aSC32 Automatic creation of CV templates for formant type speech synthesis based on HMM-based segmentation and syllable boundary detection .. 265
 Takahiro Ohtsuka, Chang-Sheng Yang, and Hideki Kasuya
1aSC33 A study on natural-sounding Japanese phonetic word synthesis based on the pitch waveform concatenation .. 267
 Yasuhiro Arai, Ryo Mochizuki, and Takashi Honda
1aSC34 The Hablarte text-to-speech system for Spanish .. 269
 Helen E. Karn
1aSC35 Pitch controlled variable bitrate CELP speech coding 271
 Robert M. Oberhofer and Frank J. Owens
1aSC36 Assessment of the intelligibility and perceived quality of speech produced by text-to-speech engines .. 273
 Michael D. Hall, Erica B. Stevens, Richard Eyraud, Denise Padden, and Patricia K. Kuhl
1aSC37 Acoustic-phonetic features for the automatic recognition of stop consonants 275
 Ahmed M. Abdelatty Ali, Jan Van der Spiegel, and Paul Mueller
1aSC38 An 800bps VQ based LPC voice coder .. 277
 Huan Chen, Xianglin Wang, and C.-C. Jay Kuo
1aSC39 A study on the speech analysis and recognition for Korean children 279
 Eunjung Park, Ji-eun Kam, Inchan Paek, Y. Kwon, Sungil Yang, and K. S. Lee

1aSP MODELING AND SYSTEM IDENTIFICATION

1aSP1 Signal models for model-based array processors .. 281
 E. J. Sullivan and J. V. Candy
Simulation of the effects of thermal turbulence on beamforming and time reversal techniques using Gaussian beam summation and Fourier modes superposition techniques

Christian Lhuillier, David Fiorina, and Daniel Juvé

Advanced system identification techniques for acoustics enhancement

Yuchang Cao and Mark Poletti

Convergence characteristics of frequency-domain LMS adaptive filters

Karl M. Reichard and David C. Swanson

A simple genetic algorithm for active noise control

Antonio Minguez and Manuel Recuero

Reducing sibilants in recorded speech using psychoacoustic models

Markus Sapp, Martin Wolters, and Jörg Becker

Machine recognition of Hindi consonants and distinctive features using vector quantization

Pradip K. Das and S. S. Agrawal

Synthesis of Hindi consonants with naturally sounding quality using PC based Klatt synthesiser

Rajesh Verma and Shyam S. Agrawal

A rejection method for the isolated word recognition system

Dong-hwa Kim, Hyung-Soon Kim, and Young-Ho Kim

Telemetry and the underwater channel: Progress and challenges

Arthur B. Baggeroer and Daniel B. Kilfoyle

Environmental impact on phase coherent underwater acoustic communications

T. C. Yang and A. Al-Kurd

Observations of coherence time and amplitude fluctuations in a shallow-water acoustic communications channel

Richard Shockley, Joseph Rice, Vincent McDonald, Dale Green, John Proakis, and John Newton

Experimental performance of concatenated coding in shallow water channels

Daniel B. Kilfoyle

Low-probability-of-detection communications in adverse underwater acoustic channels

Dale Green and Joseph A. Rice

Performance evaluation of phase coherent underwater acoustic communications during the LWAD 98-1 experiment

A. Al-Kurd, T. C. Yang, J. Schindall, and E. Carey

Adaptive array processing for acoustic communications through time-varying ocean channels

James C. Preisig

Phase-encoded frequency-hopped signaling for underwater acoustic communications

Geoffrey S. Edelson and Bradford W. Gillespie

Spectral shaping in MFSK modulation for underwater acoustic communications

Richard C. Shockley, John G. Proakis, Milica Stojanovic, and Joseph A. Rice

Doppler tolerant link (DTL)

Anthony D. Matthews and Robert L. Higginbotham

Acoustical studies of the upper ocean boundary layer

David M. Farmer
1pPLa PLENARY LECTURE

| 1pPLa1 | Sound transmission through suspended ceilings | F. P. Mechel | 323 |

1pAAa OPERA HOUSE ACOUSTICS: STATE OF THE ART

1pAAa1	The development of room acoustical demands on operas within the last 50 years	Gerhard Müller and Helmut A. Müller	327
1pAAa2	Alternate venues for opera performances. Wagner started it...should we retreat now?	Christopher Jaffe	329
1pAAa3	Orchestra pit acoustics—From Bayreuth to Broadway	Mark Holden	331
1pAAa4	Why do traditional opera houses work so well for opera?	Nicholas Edward and David Kahn	333

1pAAb SOUND FIELD FOR SINGER AND ORCHESTRA, PART 1

1pAAb1	Measurement of objective criteria for performers in the “Teatro di San Carlo” opera house	Carmine Ianniello, Gino Iannace, Luigi Maffei, and Rosario Romano	335
1pAAb2	Sound fields in orchestra pits	Jurgen Meyer	337
1pAAb3	Listening in the pit	Christopher N. Blair	339
1pAAb4	Small scale modelling of stage to pit balance—A pilot study	John O’Keefe	341
1pAAb5	Compromises in orchestra pit design: A ten year trench war in The Royal Theatre, Copenhagen	Anders Chr. Gade and Bo Mortensen	343
1pAAb6	Study on experimental equations for on-stage acoustics design	Shun-ichi Nakamura	345
1pAAb7	Orchestra platform acoustics. When will reflecting surfaces give “Box-Klangfarbe”?	Tor Halmrast	347

1pAAC ROOM ACOUSTIC MEASUREMENT TECHNIQUES, ABSORPTION AND DIFFUSION

<p>| 1pAAC1 | Measurements and modelling of commonly used resilient channels in light weight floor structures | Jonas Brunskog and Per Hammer | 349 |
| 1pAAC2 | Evaluation of the flanking transmission in a scale model of two adjoining rooms | Alessandro Cocchi, Giovanni Sempriini, and Simone Secchi | 351 |
| 1pAAC3 | Classical analysis of multilayered walls transmission loss in comparison with F.E.M. and S.E.A. approach | Marco Fringuellino, Claudio Guglielmone, and Sean Smith | 353 |
| 1pAAC4 | Optimisation of techniques for field testing of buildings | George Dodd | 355 |
| 1pAAC5 | Loss factor at boundary of single-leaf wall under vibrational field of diffused bending waves | Souichiro Kuroki and Masahito Yasuoka | 357 |
| 1pAAC6 | Transmission loss measurement of multi-layered partitions in time domain | André L. Cherman and Roberto A. Tenenbaum | 359 |</p>
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1pBV4</td>
<td>Ultrasonic focusing and steering through skull: Towards brain imaging</td>
<td>Mickaël Tanter, Jean-Louis Thomas, and Mathias Fink</td>
</tr>
<tr>
<td>1pBV5</td>
<td>High resolution ultrasound imaging system for soft tissues</td>
<td>Ye Shigong, Liu Xiaozhou, Gong Xiufen, Zhang Weiya, and Jia YiQin</td>
</tr>
<tr>
<td>1pBV6</td>
<td>Inverse imaging of the breast using a conjugate-gradient neural-network technique</td>
<td>Xiaodong Zhang, Shira L. Broschat, and Patrick J. Flynn</td>
</tr>
<tr>
<td>1pBV7</td>
<td>A filter-based pulse-echo coded-excitation system for real-time cardiac imaging</td>
<td>Emad S. Ebbini, Jian Shen, and Idris Elbakri</td>
</tr>
<tr>
<td>1pBV8</td>
<td>Main error sources in ultrasound transmission tomography imaging</td>
<td>Krzysztof J. Opieński and Tadeusz Gudra</td>
</tr>
<tr>
<td>1pBV9</td>
<td>Aggressive region growing for speckle reduction in ultrasound images</td>
<td>Ruming Yin, Yan Chen, Patrick J. Flynn, and Shira L. Broschat</td>
</tr>
<tr>
<td>1pBV10</td>
<td>Image based calculation of elevational B-scan separation</td>
<td>Jochen F. Krücker, Theresa A. Tuthill, Gerald L. LeCarpentier, J. Brian Fowlkes, and Paul L. Carson</td>
</tr>
<tr>
<td>1pEA1</td>
<td>Acoustic detection of a non-metallic object embedded in a ground material</td>
<td>H. M. Tavossi and B. R. Tittmann</td>
</tr>
<tr>
<td>1pEA2</td>
<td>High frequency imaging of thickness degradation in steel containment vessels and liners</td>
<td>Joseph E. Bondaryk</td>
</tr>
<tr>
<td>1pEA3</td>
<td>The piezoelectric implant method compared to classical ultrasonic spectroscopy: Application to the monitoring of polymer curing</td>
<td>Agnès Raquois, Mohamed Tabellout, Jacques Emery, and Yves Jayet</td>
</tr>
<tr>
<td>1pEA4</td>
<td>Interface wave source concepts for a seismo-acoustic sonar</td>
<td>Frederick E. Gaghan, Steven R. Baker, and Thomas G. Muir</td>
</tr>
<tr>
<td>1pEA5</td>
<td>Approximate computational model for sound generation due to unsteady flows in pipes</td>
<td>Michael Krane, Daniel Sinder, and James Flanagan</td>
</tr>
<tr>
<td>1pEA6</td>
<td>Acoustic-wave detection by optical beam deflection</td>
<td>James N. Caron, Yuqiao Yang, James B. Mehl, and Karl V. Steiner</td>
</tr>
<tr>
<td>1pEA7</td>
<td>Laser-based NDE using gas-coupled laser acoustic detection</td>
<td>James N. Caron, Yuqiao Yang, James B. Mehl, and Karl V. Steiner</td>
</tr>
<tr>
<td>1pEA8</td>
<td>Direct detection of acoustic waves by laser light diffraction and proposals of the optophone</td>
<td>Y. Sonoda</td>
</tr>
<tr>
<td>1pEA9</td>
<td>Nondestructive SAW technique of acoustic transient spectroscopy to study deep centers in semiconductor heterostructures</td>
<td>Peter Bury and Igor Jamnický</td>
</tr>
<tr>
<td>1pEA10</td>
<td>Spectroscopy of deep centers in high resistivity GaAs using light beam generated interface</td>
<td>Peter Bury</td>
</tr>
<tr>
<td>1pMU1</td>
<td>Some nonlinear aspects of the ear as a sound detector and a sound emitter:</td>
<td>Arnold Tubis, Carrick L. Talmadge, and Glenis R. Long</td>
</tr>
</tbody>
</table>
| 1pMU2 | Deliberate use of distortion in singing | Ingo R. Titze

1pMU THE PURPOSEFUL USE OF NONLINEAR DISTORTION IN MUSICAL PERFORMANCE: THE ERIC DOLPHY/JIMI HENDRIX CELEBRATORY SESSION

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>1pMU1</td>
<td>Some nonlinear aspects of the ear as a sound detector and a sound emitter:</td>
<td>Arnold Tubis, Carrick L. Talmadge, and Glenis R. Long</td>
</tr>
<tr>
<td>1pMU2</td>
<td>Deliberate use of distortion in singing</td>
<td>Ingo R. Titze</td>
</tr>
</tbody>
</table>
1pMU3 An acoustical appreciation of the extended performance aspects of Eric Dolphy’s musical craft ... 437
 Douglas H. Keefe
1pMU4 Eric Dolphy’s playing style in the Vienna Art Orchestra’s performance 439
 Alexandra Hettergott
1pMU5 When bad amplification is good: Distortion as an artistic tool for guitar players 441
 Tilmann Zwicker and Søren Buus
1pMU6 Jimi Hendrix’ use of distortion to extend the performance vocabulary of the electric guitar .. 443
 James J. Fricke

1pNSa IMPULSE NOISE ASSESSMENT

1pNSa1 Impulse noise and startle .. 445
 Ian H. Flindell
1pNSa2 Comparison of procedures for the quantification of the impulsivity of environmental sounds ... 447
 Giovanni Brambilla
1pNSa3 On fitting functions to data for the percent of a community highly annoyed to noise such as impulsive noise 449
 Paul D. Schomer and Karl W. Hirsch
1pNSa4 On the rating of high-energy impulsive sounds: Optimization of a level-dependent conversion procedure with the help of new field survey results 451
 Joos Vos and Edmund Buchta
1pNSa5 Community response to artillery and road-traffic sounds—A new field survey 453
 Edmund Buchta and Joos Vos
1pNSa6 Effect of low frequency content on the rate of growth of annoyance of impulsive sounds ... 455
 Sanford Fidell, Karl S. Pearsons, and Laura A. Silvati
1pNSa7 Prediction of the difference between CSEL and ASEL of blast sounds for purposes of predicting annoyance .. 457
 Karl-W. Hirsch
1pNSa8 A further test of the relevance of ASEL and CSEL in the determination of the rating sound level for shooting sounds 459
 Joos Vos
1pNSa9 Impulse noise metrics and their application to noise from low flying military jet aircraft .. 461
 G. Kerry, P. D. Wheeler, T. I. Hempstock, and D. J. James
1pNSa10 Wideband noise signatures from low altitude military jet overflights 463
 C. Lomax, G. Kerry, and D. J. James

1pNSb NOVEL APPROACHES TO NOISE CONTROL BARRIERS II

1pNSb1 Scale modelling of railway noise barriers ... 465
 D. C. Hothersall, K. V. Horoshenkov, and P. A. Morgan
1pNSb2 Specific problems on the use of noise barriers on viaducts 467
 Jean-Pierre Clairbois, Peter Houtave, and Vincent Tréfois
1pNSb3 Source type effect on the efficiency of noise barriers 469
 Philippe Jean
1pNSb4 A new in-situ method for the acoustic performance of road traffic noise reducing devices ... 471
 Jean-Pierre Clairbois, Jacques Beaumont, Massimo Garai, and Gerold Schupp
1pNSb5 The effects of atmospheric conditions on insertion loss of highway noise barriers 473
 Scott D. Hansen and Courtney B. Burroughs
1pNSb6 An innovative approach to predict sound field in a complex outdoor environment 475
 Shahram Taherzadeh, Kai Ming Li, and Keith Attenborough
1pPa OUTDOOR SOUND PROPAGATION II

1pPa1	Surface waves over a convex impedance ground	Kai Ming Li and Qiang Wang	477
1pPa2	Modeling the effects of refraction and diffraction on wave propagation in a 3-D turbulent atmosphere	Kenneth E. Gilbert and Xiao Di	479
1pPa3	Scattering of acoustic impulse waveforms by turbules	C. G. Don and I. D. McLeod	481
1pPa4	Sound propagation through time-dependent random media	Philippe Blanc-Benon, Kevin Wert, and Daniel Juvé	483
1pPa5	Acoustic measurements in an airport environment and the identification of the sound radiated by aircraft wake vortices	Neal Fine, Frank Rees, and William Von Winkle	485
1pPa6	Spectral element analysis of sound propagation in a muffler	Wen H. Lin, Daniel C. Chan, and Munir M. Sindir	487
1pPa7	The effects of turbulent intermittency on scattering for varying degrees of saturation	David E. Norris, D. Keith Wilson, and Dennis W. Thomson	489
1pPa8	The effects of atmospheric turbulence on the cross correlation between wind and travel time fluctuations	David E. Norris, Leif Kristensen, Jakob Mann, Dennis W. Thomson, and David C. Swanson	491
1pPa9	Acoustic determination of scale and structure constants in fluctuating fluid	Volker Mellert and Bernhard Schwarz-Röhr	493
1pPa10	Model experiments and predictions of sound field in a downward refracting medium	Qiang Wang and Kai Ming Li	495
1pPa11	Inclined acoustic sounding of the atmospheric boundary layer	I. P. Chunchuzov	497
1pPa12	Calculation of sound reduction by a screen in a turbulent atmosphere using the parabolic equation method	Jens Forssén	499

1pPb SCATTERING FROM FLUID-LOADED OBJECTS

1pPb1	Scattering by partially-buried shells	Raymond Lim	501
1pPb2	Visualization of the energy flux in an ensonified fluid loaded elastic sphere	Cleon E. Dean and James P. Braselton	503
1pPb3	Experimental measurements and theoretical modelling of acoustic scattering by a cube	Victor F. Humphrey, Jingdong Zhang, and Paul A. Chinnery	505
1pPb4	Direct and inverse obstacle scattering by shape deformation	D. N. Ghosh Roy, Luise Couchman, and Jeremy Warner	507
1pPb5	The scattering of hydrodynamic flow into sound by solid bodies—An alternative derivation of Howe's formula	Dan Lin and Alan Powell	509
1pPb6	Interaction of an acoustic plane wave with a circular elastic plate in water	Yannick Eudeline, Hugues Duflot, Jean-Louis Izbicki, and Jean Duclos	511
1pPb7	Scattering by an elastic cylinder buried in a sedimentary fluid media	Arnaud Coatanhay and Jean-Marc Conoir	513
1pPb8	Transient diffraction of a plane step pressure pulse by a hard sphere—Neoclassical solution	H. Huang and G. C. Gaunaurd	515
1pPAb9 Bistatic sonar cross-sections and time-frequency signatures of simple targets
insonified by an acoustic pulse .. 517
Guillermo C. Gaunaurd and Hans C. Strifors

1pPAb10 New results for diffraction from an impedance wedge 519
Andrew N. Norris and Andrey V. Osipov

1pPAb11 Physical nature of the first circumferential wave of a Lucite cylinder immersed in water ... 521
Farid Chati, Fernand León, and Gérard Maze

1pPAb12 A new model to predict echoes of large, smooth targets, with finite dimensions transducers, at a low cpu cost ... 523
J. L. Berton, C. Riffard, D. Dedieu, and C. Dominjon

1pPAb13 Prediction of echoes from small targets: Modelisation and application to a telemetry problem .. 525
C. Riffard, J. L. Berton, and C. Estienne

1pPAb14 Matrix theory of elastic resonance scattering 527
Myoung-Seon Choi

1pPAc NONLINEAR WAVE PROPAGATION IN FLUIDS

1pPAc1 New symmetries and conservation laws for lossless KZK equation 529
Oleg A. Sapozhnikov and Andrei G. Kudryavtsev

1pPAc2 Nonlinear wave propagation from a discrete annular array: Theory 531
Steven G. Kargl, Ronald A. Roy, and Patrick Edson

1pPAc3 Nonlinear wave propagation from a discrete annular array: Experiments 533
Patrick Edson, Ronald A. Roy, and Steven G. Kargl

1pPAc4 On the asymmetric shape of shock waves in focused sound fields 535
Halvor Hobæk

1pPAc5 Parametric efficiency of a bi-frequency focusing Gaussian nonlinear source 537
M. Serhat Özyar

1pPAc6 Generation of harmonics in the nearfield of finite amplitude sources 539
Eugeniusz Kozaczka and Grażyna Grelowska

1pPAc7 Raman-Nath diffraction caused at the focal point of a concave type transducer 541
Yoshiaki Watanebe, Hiromaka Miyaki, and Keisuke Fujita

1pPAc8 Parameter sensitivity in nonlinear and dissipative time-reversed acoustics 543
Claes M. Hedberg

1pPAc9 Induced transparency of an acoustical waveguide, containing a liquid with nonlinear viscosity .. 545
O. M. Zozulya

1pPAc10 Application of the three-wave interaction to the problem of acoustical monitoring of complicated media ... 547
S. A. Rybak

1pPAc11 Application of nonlinear interaction of sound waves in sound reproduction 549
Dong Weiguo, Wu Qunli, and Ling Shih Fu

1pPP PERIPHERAL PROCESSES, MODELS AND LOUDNESS

1pPP1 Frequency-dependent saturation in inner hair cell responses 551
M. A. Cheatham and P. Dallos

1pPP2 Linear and nonlinear modeling techniques for cochlear mechanics 553
Karl Grosh, Anand A. Parthasarathi, and Alfred L. Nuttall

1pPP3 Rejecting a cochlear-partition model with constant mass 555
Timothy A. Wilson

1pPP4 Determination of roots of eikonal equation for WKB solution in cochlear models 557
Anand A. Parthasarathi, Karl Grosh, and Alfred L. Nuttall

1pPP5 A signal detection theoretic analysis of the Carney model of auditory processing 559
Leslie M. Collins and Lisa C. Gresham
1pPP6 Signal detection theoretic analysis of auditory processing: Phase uncertainty and multiple channel integration ... Lisa C. Gresham and Leslie M. Collins
1pPP7 A descriptive model of under- and over-shoot patterns in the temporal masking function of a narrowband noise ... C. Fornby, J. C. Rutledge, M. G. Heinz, L. P. Sherlock, and I. V. Aleksandrovsky
1pPP8 Detection of an increment in a single frequency component of a noise background as a function of increment frequency and duration .. C. Fornby, M. G. Heinz, and I. V. Aleksandrovsky
1pPP9 A unified theory of two-tone suppression and the upward-spread of masking J. B. Allen and D. Sen
1pPP10 Equal-loudness relations at high frequencies: Implications for loudness growth Rhona Hellman, Hisashi Takeshima, Yōiti Suzuki, Kenji Ozawa, Takanori Yamaguchi, Yusaku Sasaki, and Toshio Sone
1pPP11 Global and continuous judgements of sounds with time-varying intensity: Cross-modal matching with a proprioceptive input device .. Patrick Susini and Stephen McAdams
1pPP12 On the effects of a subharmonic masker on the loudness of a pure tone Kenji Ozawa, William Hellman, Yoshinori Inoue, Yoiti Suzuki, and Toshio Sone

1pSA RADIATION AND SCATTERING FROM ELASTIC STRUCTURES

1pSA1 Sound scattering by a fluid-loaded finite cylindrical shell ... Aleksander Klauson, Jaan Metsaveer, Nicolas Touraine, Dominique Déculotot, and Gérard Maze
1pSA2 Meridional and helical ray contributions to backscattering by titled cylindrical shells: High frequency tone burst and wide bandwidth measurements and interpretation ... Scot F. Morse and Philip L. Marston
1pSA3 A method of target characterization based on the analysis of Scholte-Stoneley and Lamb-type waves scattered by submerged fluid-filled thin-walled shells .. Alessandra Tesei, Warren L. J. Fox, Alain Maguer, and Arne Lavik
1pSA4 Scattering from elastic targets near a planar boundary ... Garner C. Bishop and Judy Smith
1pSA5 Convolution formulation for high-frequency leaky wave scattering enhancements for solids and shells with truncations: Evaluation of the surface integral and experimental and computational tests ... Philip L. Marston, Karen Gipson, and Scot F. Morse
1pSA6 Vibroacoustical modelling and modal analysis of a double wall panel S. J. Pietrzko
1pSA7 Angular distribution of incident sound energy for estimating the sound transmission loss of multi-layered panels .. Hyun-Ju Kang, Hyun-Sil Kim, Jae-Seung Kim, Sang-Ryul Kim, and Jeong-Guon Ih
1pSA8 An analytical model for band-limited response of vibroacoustic systems K. S. Sum and J. Pan
1pSA9 Optimization procedures for strain sensing in active structural acoustic control P. Masson and A. Berry
1pSA10 Measurements and modeling of the transient acoustic field at impacted plates Antoine Chaigne, Christophe Lambourg, and Staffan Schedin
1pSA11 Nearfield acoustic source identification based on numerical models and operational pressure data ... Paul Sas and Peter Mas
1pSA12 Visualization of sound field generated by plate-cavity coupled system using acoustic holography .. Yang-Hann Kim and Sea-Moon Kim
1pSC THE STATE OF THE ART IN SPEECH TECHNOLOGY

1pSC1 Building acoustic models for speech recognition .. 599
Francesco Scattone

1pSC2 Spoken language technology research at Microsoft .. 601
X. D. Huang

1pSC3 Recent activities in spoken language processing at LIMSI .. 603
Jean-Luc Gauvain and Lori Lamel

1pSC4 Recent advances in speech recognition at IBM Research .. 605
Ponani S. Gopalakrishnan

1pSC5 Research and development of robust speech recognition .. 607
Kiyoaki Aikawa

1pSC6 21st century user interfaces within the telecommunication industry: Speech processing is the key .. 609
Jay Wilpon

1pSC7 Natural speech dialogue systems ... 611
Volker Steinbiss

1pSC8 Recent advances in speech recognition for spontaneous speech translation 613
Yoshinori Sagisaka

1pSC9 Speech trends and predictions, or do we need text? .. 615
Patti Price

1pSC10 From speech recognition to understanding: Shifting the paradigm to achieve natural human-machine communication .. 617
B. H. Juang

1pSP NON-STATIONARY AND WAVELET PROCESSING METHODS

1pSP1 Improvement of pitch detection using signal specific analyzing wavelet 619
Yoshifumi Chisaki, Tsuyoshi Usagawa, and Masanao Ebata

1pSP2 Comparison between DyWT- and EGG-based estimation of glottal closure instant for speech signal .. 621
Jongwon Seok, Youngho Son, and Keunsung Bae

1pSP3 A novel endpoint detection method for noisy speech signal 623
Jongwon Seok and Keunsung Bae

1pSP4 Speech enhancement by a Kalman filter based on wavelet transformation coefficients ... 625
Ryouichi Nishimura, Futoshi Asano, Yōiti Suzuki, and Toshio Sone

1pSP5 Time variation characterization of a nonstationary time series 627
Nai-chyuan (Nate) Yen

1pSP6 Comparison of methods for analysis of cyclostationary noise 629
Karel Vokurka

1pUW SOURCES, ARRAYS, TRACKING AND LOCALIZATION

1pUW1 Localized wave pulses in the Keyport experiment .. 631
David H. Chambers and D. Kent Lewis

1pUW2 Localized wave generation with a standard underwater array 633
D. Kent Lewis, David H. Chambers, Christopher S. Mullin, and Richard W. Ziolkowski

1pUW3 An inexpensive lightweight ocean acoustic research array 635
Garry J. Heard and Wayne Higgins

1pUW4 Optimal array element localization .. 637
Stan E. Dosso and Barbara J. Sotirin

1pUW5 Detection and tracking of a moving source with application to real data (SWellEx-3) .. 639
Stacy L. Tantum and Loren W. Nolte

1pUW6 Characterization of fault processes in central Arctic ice .. 641
Catherine Stamoulis and Ira Dyer
1pUW7 A time-reversal mirror with variable depth focusing 643
 H. C. Song, W. A. Kuperman, W. S. Hodgkiss, T. Akal, C. Ferla, and D. R. Jackson
1pUW8 A piecewise matched-field tracking algorithm 645
 Michael J. Wilmut and John M. Ozard
1pUW9 Effects of environmental mismatch on broadband Bartlett sidelobe structures 647
 Aaron M. Thode, Gerald L. D’Spain, Hee Chun Song, and William A. Kuperman
1pUW10 A PE-based backpropagation algorithm for matched-field processing 649
 David J. Thomson, Gordon R. Ebbeson, and Brian H. Maranda
1pUW11 Regularized matched-mode processing ... 651
 Nicole E. Collison and Stan E. Dosso
1pUW12 A modified grid method for matched-field localization 653
 Ling Xiao, Renhe Zhang, and Lianghao Guo

1pPLb PLENARY LECTURE

1pPLb1 Adapted waveform analysis, A tool for audio processing and enhancement 655
 Ronald R. Coifman

VOLUME II

2aPLa PLENARY LECTURE

2aPLa1 Non-invasive ultrasonic surgery .. 659
 Gail ter Haar

2aAAa SOUND FIELD FOR SINGERS AND ORCHESTRA, PART 2

2aAAa1 Individual preference on the delay time of a single reflection for cellists 663
 Shin-ichi Sato, Saho Ota, and Yoichi Ando
2aAAa2 A study of improvements to acoustical conditions for singer 665
 Dennis Noson
2aAAa3 Some recent experiences with the acoustical design of orchestra pits 667
 Kurt Graffy, Larry Tedford, and Dennis Paoletti
2aAAa4 The virtual orchestra: Creative issues ... 669
 Frederick W. Bianchi and Richard H. Campbell
2aAAa5 The virtual orchestra: Acoustical and audio engineering issues 671
 Richard H. Campbell and Frederick W. Bianchi
2aAAa6 The effect of early reflection on players in concert hall 673
 Kanako Ueno, Fumiaki Satoh, Hideki Tachibana, Takahiko Ono, and Mariko Senju

2aAAb SOUND FIELD FOR THE AUDIENCE, PART 2

2aAAb1 Boxes and sound quality in an Italian opera house 675
 Alessandro Cocchi, Massimo Garai, and Carla Tavernelli
2aAAb2 Measurements of the sound energy polarization at some locations inside an Italian opera house .. 677
 Domenico Stanzial, Davide Bonsi, and Nicola Prodi
2aAAb3 Measurements in opera houses: Comparison between different techniques and equipment ... 679
 Patrizio Fausti, Angelo Farina, and Roberto Pompoli
2aAAb4 Individual subjective preference of listeners for vocal music sources in relation to the subsequent reverberation time of sound fields 681
 Hiroyuki Sakai, Hiroshi Setoguchi, and Yoichi Ando

B17
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scale effects as constraints in insect sound communication</td>
<td>683</td>
</tr>
<tr>
<td>H. C. Bennet-Clark</td>
<td></td>
</tr>
<tr>
<td>Acoustic detection and identification of insects in soil</td>
<td>685</td>
</tr>
<tr>
<td>Richard W. Mankin, Robert L. Crocker, Kathy L. Flanders, and Jeffrey P. Shapiro</td>
<td></td>
</tr>
<tr>
<td>Two-tone suppression of the ultrasound induced startle response in a cricket</td>
<td>687</td>
</tr>
<tr>
<td>Hamilton E. Farris and Ronald R. Hoy</td>
<td></td>
</tr>
<tr>
<td>Synchrony in cricket calling songs: Models of coupled biological oscillators</td>
<td>689</td>
</tr>
<tr>
<td>T. G. Forrest, Joel Ariaratnam, and Steven H. Strogatz</td>
<td></td>
</tr>
<tr>
<td>Functional anatomy of the middle ear of insectivores</td>
<td>691</td>
</tr>
<tr>
<td>Matthew J. Mason</td>
<td></td>
</tr>
<tr>
<td>Acoustics of the avian vocal tract</td>
<td>693</td>
</tr>
<tr>
<td>Neville Fletcher and Alex Tarnopolsky</td>
<td></td>
</tr>
<tr>
<td>Bioacoustic correlates of female choice in European starlings</td>
<td>695</td>
</tr>
<tr>
<td>T. Q. Gentner and S. H. Hulse</td>
<td></td>
</tr>
<tr>
<td>The Scripps Pier Bubble Experiment of 1997</td>
<td>697</td>
</tr>
<tr>
<td>Vertical profiles and horizontal scales of bubble clouds in the surf zone as measured with a distributed array of upward-looking sonars</td>
<td>699</td>
</tr>
<tr>
<td>Peter H. Dahl, Stephen J. Stanic, Robert A. Fisher, Robert G. Drever, and Roger W. Meredith</td>
<td></td>
</tr>
<tr>
<td>Bubble generation and dispersion in the surf zone</td>
<td>701</td>
</tr>
<tr>
<td>Svein Vagle, David M. Farmer, and Grant B. Deane</td>
<td></td>
</tr>
<tr>
<td>Bubbles and surf zone oceanography</td>
<td>703</td>
</tr>
<tr>
<td>Eric J. Terrill and W. Kendall Melville</td>
<td></td>
</tr>
<tr>
<td>Breaking wave measurement in Sandy Duck '97</td>
<td>705</td>
</tr>
<tr>
<td>Ming-Yang Su</td>
<td></td>
</tr>
<tr>
<td>Tomographic reconstruction of evolving bubble fields in the Scripps Pier Bubble Experiment</td>
<td>707</td>
</tr>
<tr>
<td>Daniel Rouseff, Frank S. Henyey, Paul A. Elmore, and Jerald W. Caruthers</td>
<td></td>
</tr>
<tr>
<td>Effects of bubbles on high-frequency sound propagation in very shallow water</td>
<td>709</td>
</tr>
<tr>
<td>A novel approach for obtaining bubble dissolution measurements at sea</td>
<td>711</td>
</tr>
<tr>
<td>Russell Costa, Ronald A. Roy, Kerry W. Commander, Victor B. Johnson, and Andrew C. Colbert</td>
<td></td>
</tr>
<tr>
<td>Analysis of free bubble cloud scattering data from the Lake Seneca experiment</td>
<td>713</td>
</tr>
<tr>
<td>J. Gregory McDaniel, Ronald A. Roy, Andrew D. Gephart, and William M. Carey</td>
<td></td>
</tr>
<tr>
<td>Sound radiation by a bubble encountering a vortex ring</td>
<td>715</td>
</tr>
<tr>
<td>Ali R. Kolaini</td>
<td></td>
</tr>
<tr>
<td>Biological effects of ultrasound</td>
<td>717</td>
</tr>
<tr>
<td>Wesley L. Nyborg</td>
<td></td>
</tr>
<tr>
<td>Therapeutic ultrasound: A promising future in clinical medicine</td>
<td>719</td>
</tr>
<tr>
<td>Lawrence Crum, Michael Bailey, Peter Kaczkowski, Inder Makin, Pierre Mourad, Kirk Beach, Stephen Carter, Udo Schmiedl, Wayne Chandler, Roy Martin, Shahram Vaezy, George Keliman, Robin Cleveland, and Ronald Roy</td>
<td></td>
</tr>
<tr>
<td>Acoustic liver cauterization: A potential tool for bloodless surgery</td>
<td>721</td>
</tr>
<tr>
<td>Roy Martin, Shahram Vaezy, Scott Helton, Michael Caps, Peter Kaczkowski, George Keliman, Steve Carter, Wayne Chandler, Pierre Mourad, Kirk Beach, and Lawrence Crum</td>
<td></td>
</tr>
</tbody>
</table>
2aBV4 High intensity focused ultrasound transducer design for surgical and hemostatic applications ... 723
George W. Keilman and Peter J. Kaczkowski

2aBV5 Acoustic field of a device for noninvasive pressure wave therapies in orthopedics 725
Eckard Steiger, Thomas Dreyer, and Jürgen Mayer

2aBV6 Ex-vivo studies of the effects of high-intensity focused ultrasound on whole blood 727
Sandy Poliachik, Wayne Chandler, Pierre D. Mourad, Susannah Bloch, Michael Bailey,
Robin Cleveland, Lawrence A. Crum, Peter Kaczkowski, George Keilman, and Tyrone Porter

2aBV7 Shaping of focused ultrasound beams to expedite thermal necrosis in tumor therapy ... 729
Frederic L. Lizzi

2aBV8 An image-guided ultrasound phased array system for non-invasive surgery 731
Emad S. Ebbini, Philip D. VanBaren, and Claudio Simon

2aBV9 MRI monitoring and control of focused ultrasound surgery 733
K. Hynynen, N. McDannold, T. Fjeld, and D. Daum

2aEA ULTRASONIC TRANSDUCERS FOR APPLICATIONS IN AIR

2aEA1 Influence of air loading and dissipation on plate transducer amplitude 735
Arthur Ballato

2aEA2 Absolute amplitude measurements using a capacitive receiver 737
M. A. Breazeale

2aEA3 Silicon micromachined ultrasonic transducers ... 739
B. T. Khuri-Yakub

2aEA4 Air transducers with high acoustic impedance ... 741
Lawrence C. Lynnworth

2aEA5 Ultrasonic capacitance transducers for flow and temperature tomography in air 743
D. A. Hutchins, W. M. D. Wright, D. W. Schindel, and P. W. Carpenter

2aEA6 Ultrasonic air-coupled capacitance transducers using thin mica films 745
Paul Ingleby, Toby J. Robertson, David A. Hutchins, and David W. Schindel

2aEA7 Recent developments in air-coupled ultrasonic capacitance transducers for use with NDE experiments ... 747
Craig S. McIntyre, David A. Hutchins, and David W. Schindel

2aMU PHYSICS AND MATERIALS OF MUSICAL INSTRUMENTS I

2aMU1 Fluid dynamic aspects of human voice and brass instruments: Implications for sound synthesis ... 749
Xavier Pelorson, Regis Msallam, Joel Gilbert, and Avraham Hirschberg

2aMU2 The effect of wall materials on the timbre of brass instruments 751
Robert W. Pyle, Jr.

2aMU3 The effect of wall vibrations on the timbre of organ pipes 753
Judit Angster, Gyorgy Paál, W. Garen, and Andras Miklos

2aMU4 Acoustically driven sinuous instability of a planar air jet 755
A. W. Nolle

2aMU5 Jet wave amplification in organ pipes ... 757
Shigeru Yoshikawa

2aMU6 Interpretation of shear material properties of vocal fold mucosal tissues with Fung’s quasi-linear viscoelastic theory 759
Roger W. Chan and Ingo R. Titze

2aMU7 Theoretical and experimental investigation of the air-driven free reed 761
James P. Cottingham

2aMU8 Material and obsolescence on flute quality ... 763
Alessandro Cocchi and Lamberto Tronchin
2aNSa ACOUSTICS OF BUILDINGS

2aNSa1 Active attenuation of fan noise in air-conditioning duct 765
Ondřej Jiříček and Petr Koniček

2aNSa2 Studies on a new type of silencers for air ducts .. 767
Fathy B. Shenoda and Reda N. Haroun

2aNSa3 Noise of cleanroom recirculation air systems ... 769
Mei Q. Wu and Colin G. Gordon

2aNSa4 Noise and vibration characteristics of cleanroom fan-filter units 771
Mei Q. Wu and Colin G. Gordon

2aNSa5 Design and acoustical characteristics of anechoic room with high-power heating or cooling and sound field free transform system .. 773
Yang Weicheng, Yang Jiahua, Qiao Wuzhi, and Liao Wenbin

2aNSa6 Demystifying sound power measurements with sound intensity 775
Peter Larsen and Douglas Manvell

2aNSb COMMUNITY NOISE ANNOYANCE FROM ENTERTAINMENT AND OTHER SOURCES

2aNSb1 A Hong Kong approach to control noise from outdoor entertainment activities 777
Sam W. H. Wong, K. S. Chan, Y. K. Kam, and P. S. Ng

2aNSb2 Annoyance and health effects of entertainment noise 779
Christopher G. Rice

2aNSb3 Proactive concert sound management: The essential ingredient for community acceptance of outdoor concert venues ... 781
Richard G. Cann and William J. Cavanaugh

2aNSb4 Entertainment park noise control devices ... 783
Alessandro Cocchi, Ombretta Pinazza, and Giovanni Semprini

2aNSb5 Comparison of predicted and measured noise levels for refinery units 785
Frank H. Brittain and Mark M. Gmerek

2aNSb6 Acoustic modelling and simulation of an urban substation 787
Eduardo Bauzer Medeiros and Gia Kroeff

2aNSb7 Environmental pollution and noise control of two power generator sets placed into a recreative area ... 789
Victor Rastelli, Nila Montbrun, and Alexis Buoza

2aPAa DUCTS AND TUBES

2aPAa1 The effect of mass transfer on sound propagation in cylindrical tubes using the low reduced frequency approximation ... 791
Craig J. Hickey, Richard Raspet, and James M. Sabatier

2aPAa2 Measurement of the radiation impedance of a pipe with a circular flange 793
Jean-Pierre Dalmont and Nicolas Joly

2aPAa3 Boundary-integral-equation methods for accurate calculation of acoustic fields 795
James B. Mehl

2aPAa4 Numerical study of sound field radiated from a circular duct with an open end 797
Zhichi Zhu, Anqi Zhou, Dongtao Huang, and Qing Guo

2aPAa5 Experimental investigation on nonlinear standing waves by two tube structure 799
Liu Ke and Maa Dah-you

2aPAa6 Influence of airflow on sound propagation in a curved tunnel 801
Hiroyuki Imaizumi and Takehiro Isei

2aPAa7 Acoustic propagation in presence of an arbitrary flow 803
Christophe Peyret

2aPAa8 Propagation of vibration waves in a pipe .. 805
Mihail-Dan F. Simion, Gabriela D. Simion, and Florian-Paul I. Simion
2aPAb TOPICS IN THERMOACOUSTICS

2aPAb1 Simple model for temperature gradient formation in a short stack 807
Ralph T. Muehleisen and Anthony A. Atchley

2aPAb2 Performance measurements of a thermoacoustic refrigerator at high amplitudes 809
Matthew E. Poese and Steven L. Garrett

2aPAb3 Extended performance measurements for SETAC ... 811
Anat Grant and Steven L. Garrett

2aPAb4 Solar/heat driven thermoacoustic engine ... 813
Reh-Lin Chen and Steven L. Garrett

2aPAb5 Thermoacoustic refrigeration demonstration .. 815
Ray Scott Wakeland and Steven L. Garrett

2aPAb6 Precision measurements of thermoacoustics in a single pore 817
G. Petculescu and L. Wilen

2aPAb7 Temperature distribution in a circular thermoacoustic pore 819
George Mozurkewich

2aPAb8 Linear resonant duct thermoacoustic refrigerator having regenerator stacks 821
Y. T. Kim, S. J. Suh, and M. G. Kim

2aPAb9 Theory of nonlinear acoustic waves in thermoacoustic prime mover 823
Vitalyi Gusev, Pierrick Lotton, Hélène Bailliet, and Michel Bruneau

2aPP FROM EAR CANAL TO CORTEX—CLEARCUTS AND OLD GROWTH

2aPP1 Temporal versus spectral cues in AM detection ... 825
Martin Rickert and Neal Viemeister

2aPP2 Estimates of temporal resolution at low and high spectral frequencies 827
David A. Eddins

2aPP3 Detecting irregularity of envelope modulation ... 829
Stanley Sheft

2aPP4 Effects of carrier level on supra-threshold AM processing .. 831
Magdalena Wojtczak and Neal Viemeister

2aPP5 Variations of the leaky-integrator model and validation with detection of sinusoidal and percentage duty-cycle modulated noise .. 833
John A. Nelson and Ruth A. Bentler

2aPP6 Comodulation masking release with tone pips added out of phase to the valleys of a sinusoidally amplitude modulated pure tone ... 835
Deborah A. Fantini, Roel Delahaye, and Ray Meddis

2aPP7 Comodulation masking release: The effect of the characteristics of noisebands presented before and after a signal ... 837
Lee Mendoza, Joseph W. Hall, III, and John H. Grose

2aPP8 Perception of roughness in harmonic multitones .. 839
Andrzej B. Dobrucki and Maury C. Kin

2aPP9 A model of auditory image flow I: Architecture ... 841
N. P. McAngus Todd

2aPP10 A model of auditory image flow II: Detection of amplitude and frequency modulation ... 843
N. P. McAngus Todd and Duncan R. Brown

2aPP11 Role of pinna cavities in median plane localization .. 845
Kazuhiro Iida, Motoki Yairi, and Masayuki Morimoto

2aPP12 The influence of different speech segments on spatial localization 847
Brian L. Karlsen

2aPP13 Underwater sound localization: Role of interaural differences 849
Pierre Bovet, Carolyn Drake, François Bernaschina, and Sophie Savel

2aPP14 A new model for binaural signal detection ... 851
Jeroen Breebaart, Steven van de Par, and Armin Kohlrausch

2aPP15 Further evidence for the influence of peripheral compression on binaural detection 853
Steven van de Par and Armin Kohlrausch
2aPP16 Model of auditory localization using neural networks .. 855
Scott K. Isabelle, James A. Janko, and Robert H. Gilkey

2aPP17 On the difference between absolute and relative auditory distance perception 857
Hae-Young Kim, Yōiti Suzuki, Shouichi Takane, Kenji Ozawa, and Toshio Sone

2aPP18 Auditory motion aftereffects with a two-tone adapter .. 859
Hisashi Uematsu and Makio Kashino

2aPP19 Echolocation by moving and stationary listeners .. 861
Michael S. Gordon, Lawrence D. Rosenblum, and Luis Jarquin

2aPP20 Reflectance measurements of the acoustic reflex input-output function 863
M. Patrick Feeney and Douglas H. Keefe

2aPP21 Vibration measurement of the tympanic membrane using the time-averaged speckle pattern interferometry ... 865
Hiroshi Wada, Masataka Takeuchi, Koji Hozawa, Takashi Gemma, and Makoto Nara

2aPP22 Filter shapes for brief signals as a function of preceding stimulation 867
Elizabeth A. Strickland

2aPP23 Variable-duration notched-noise experiments in a noise context 869
James J. Hant, Brian P. Strope, and Abeer A. Alwan

2aPP24 Comparison of psychophysical and neural thresholds in response to electrical stimulation of the cochlea in guinea pigs ... 871
Bryan E. Pfingst, Lisa M. Montney, and Sanford C. Bledsoe

2aPP25 Physiological correlates of the “mean-term” auditory adaptation 873
Nikolay G. Bibikov and Oxana N. Grubnik

2aPP26 Mechanisms underlying recovery from forward masking in electrical stimulation 875
Monita Chatterjee

2aPP27 Neurophysiological and psychophysical measures of duration discrimination in normal-hearing adults and adults with cochlear implants ... 877
Patricia G. Trautwein, Curtis W. Ponton, Betty Kwong, and Michael D. Waring

2aPP28 Spectro-temporal influence on auditory cortical evoked potential thresholds 879
Ann Clock Eddins

2aPP29 Psychometric functions for gap detection ... 881
Mary Florentine, Søren Buus, and Wei Geng

2aPP30 Suppression and the upward spread of masking .. 883
Andrew J. Oxenham and Christopher J. Plack

2aPP31 Intensity discrimination of ramped and damped tones ... 885
Robert S. Schlauch, Dennis T. Ries, Jeffrey J. DiGiovanni, Sarah Elliott, and Shari Campbell

2aPP32 Preferential detection of rising versus falling intensity .. 887
John G. Neuhoff and Jennifer S. Wess

2aPP33 The detection of differences in rate of frequency change in gliding tones 889
John P. Madden and John G. Pierce

2aPP34 Contribution to the study of the audiometrical scores sources of variation 891
Marielle Bruyninckx, Sáïda Hamache, and Bernard Harmegnies

2aPP35 Hawkins and Stevens revisited at low frequencies .. 893
Andrianus J. M. Houtsma

2aPP36 The perception of three tone patterns by Indian and American listeners 895
Nandini Iyer, Evelyn M. Hoglund, and Mari R. Jones

2aPP37 Tempo perception is limited by a short temporal window 897
Nathalie Panissal-Vieu and Carolyn Drake

2aPP38 Investigations and analysis of assessment words for sound quality for the reproduction of high order sensations ... 899
Tomoharu Ishikawa, Shingo Fuyuki, and Makoto Miyahara

2aPP39 Factor analysis of the perception of the evaluation of environmental sounds using adjectives describing sound quality, emotional state, and information carried by sounds .. 901
Toshio Sone, Koji Abe, Kenji Ozawa, and Yōiti Suzuki

2aPP40 Sound quality estimation using human hearing sensation 903
Dong-Chul Chung, Soon-Hyob Kim, and Wan-Sup Cheung
2aPP41 Analysis of annoyance of low-frequency beat inside a vehicle 905
K. Genuit and J. Poggenburg

2aPP42 Spectrum contrast and noise annoyance .. 907
Anna Preis

2aPP43 Detection and discrimination of amplitude-modulated signals in noise .. 909
King Chung, Fan-Gang Zeng, and Beverly A. Wright

2aSA NEW CHALLENGES IN STRUCTURAL ACOUSTICS

2aSA1 Structural acoustics of consumer products .. 911
Richard H. Lyon

2aSA2 Wind noise challenge in automobile industry .. 913
Jen Y. Her and William B. Coney

2aSA3 Brake noise challenge in automobile industry ... 915
Shih-Enn Chen and Jen-Yuan Her

2aSA4 Integration of small transducers in commercial products 917
Jarmo Hietanen

2aSA5 Complex resonances of elliptic cylinders: Numerical evaluation and full classification ... 919
Stéphane Ancey, Antoine Folacci, and Paul Gabrielli

2aSA6 Acoustic scattering by a three-cylinder scatterer: Theoretical and numerical study of resonances .. 921
Paul Gabrielli, Yves Decanini, Antoine Folacci, and Elisabeth Fournier

2aSA7 Bandpass filters for the evaluation of short reverberation times 923
Malte Kob

2aSA8 Piezoelectric thin shell theoretical model and eigenfunction analysis of radially polarized ceramic cylinders .. 925
D. D. Ebenezer and Pushpa Abraham

2aSC RHYTHM IN MUSIC AND SPEECH

2aSC1 Limit cycle dynamics in prosody .. 927
Fred Cummins

2aSC2 Temporal correlates of foot-level timing in English and Japanese 929
Keiichi Tajima and Robert F. Port

2aSC3 Attention, rhythmicity, and expectancy .. 931
Mari Riess Jones

2aSC4 Context effects in time discrimination .. 933
J. Devin McAuley

2aSC5 Categorization of temporal intervals .. 935
Edward W. Large

2aSC6 Models of entraining neural rhythms .. 937
Bill Baird

2aSP IMPLEMENTATION ISSUES OF ACOUSTICAL SIGNAL PROCESSING IN REAL TIME SYSTEMS I

2aSP1 Implementation of real-time acoustic communications systems 939
Robert Nation, David Herold, Geoffrey Edelson, and Eric Will

2aSP2 An adaptive processing structure for integrated active-passive SONARs deploying cylindrical arrays .. 941
Amar C. Dhanantwari and Stergios Stergiopoulos

2aSP3 Sound ranging of impulsive sources in air .. 943
Brian G. Ferguson

2aSP4 Active target detection in the ocean: Optimizing performance and cost 945
Zoi-Heleni Michalopoulou
Implementation of a broadband, environmentally sensitive detector in real time system ... 947
Georgios Haralabus

2aUW PROPAGATION, AMBIENT NOISE, AND IMAGING

Comparison of simultaneous signal reception over long range among hydrophones with unlike acoustic geometries ... 949
H. M. Walkinshaw

The form of the normal mode that ensures escape with certainty from a surface channel .. 951
Edward R. Floyd

Spatial coherence of sound in convergence zones and shallow zones in deep water 953
Dinghua Guan, Renhe Zhang, Yan Wang, and Zhenge Sun

Pulse propagation in random media .. 955
Dalcio K. Dacol

Time series analysis of propagation in a weakly range-dependent shallow-water environment ... 957
Finn B. Jensen, Francesco Bini-Verona, Peter L. Nielsen, and Peter Gerstoft

A two-way parabolic equation for a fluid/elastic waveguide .. 959
Joseph F. Lingevitch and Michael D. Collins

Spatial coherence in range dependent shallow water environments 961
Ilya Rozenfeld, William L. Siegmann, William M. Carey, James F. Lynch, and Peter Cable

Thin-sediment shear-induced effects on low-frequency broadband acoustic propagation in a shallow continental sea ... 963
Dag Tollefsen

Elimination of branch cuts from the normal mode solution using gradient halfspaces .. 965
Evan K. Westwood and Robert A. Koch

Improving a practical broadband adiabatic normal mode model by including untrapped modes ... 967
Robert A. Koch, David P. Knobles, Julienne E. LeMond, and Evan K. Westwood

Parabolic equation models for transverse isotropic sediments 969
Andrew J. Fredericks, William L. Siegmann, and Michael D. Collins

Inclusion of continuum effects in coupled-mode theory using leaky modes 971
David P. Knobles, Robert A. Koch, Steven A. Stotts, and Evan K. Westwood

A search algorithm to predict the resonance frequency of a shallow water soliton packet .. 973
Stanley A. Chin-Bing, David B. King, Alex Warn Varnas, and Robert A. Zingarelli

Numerical model for low-frequency sound propagation in inhomogeneous waveguides .. 975
Alexander G. Voronovich

Broadband propagation over randomly varying, range-dependent sediments 977
Michael Jaye, Mohsen Badiey, William L. Siegmann, and Xin Tang

The existence and coherence of ray bundles in a refractive ocean 979
Ivan P. Smirnov, Jerald W. Caruthers, and Alexander I. Khil’ko

Vertical noise coherence measurements in shallow water using Lagrangian drifters 981
Francine Desharnais, Blair R. MacDonald, and Kenneth J. Mah

Prediction of ambient noise in the ocean—The missing components 983
Douglas H. Cato

Application of adaptive filter in influence extraction .. 985
S. Veerabhardraiah

Global autofocussing techniques for acoustic imaging 987
Peter T. Gough and Richard G. Lane
Up-to-date state and outlook for the intensity measurement method in underwater acoustics

Vladimir Shchurov

2aPLb PLENARY LECTURE

Acoustics of outdoor surfaces

Keith Attenborough

2pPLa PLENARY LECTURE

Trends in electromechanical transduction

Ilene J. Busch-Vishniac

2pAAa OPERA HOUSE DESIGN CASE HISTORIES

Acoustics in the competition for the construction of the opera house ‘‘La Fenice’’: 1789–1790

Roberto Pompoli and Maria Ida Biggi

Acoustic program in the competition for the reconstruction of the ‘‘La Fenice’’ opera house after the fire of 29 January 1996

Mauro Strada and Roberto Pompoli

The restoration of La Fenice in Venice: The consultant’s viewpoint

Daniel E. Commins

The acoustics of the Italian opera house ‘‘Teatro di San Carlo’’ in Naples-Italy

Luigi Maffei, Gino Iannace, Carmine Ianniello, and Rosario Romano

Acoustics of the historical opera house of Bordeaux: Comparison between the results of objective and subjective surveys

Catherine Semidor and Aline Barlet

Preserving the acoustical legacy of a modernized opera house

Larry Tedford, Dennis Paoletti, Kurt Graffy, and Red Wetherill

A unique setting for an opera orchestra

Ewart A. Wetherill

Virtual reflecting walls for improving the acoustic of defective halls

Jean-Paul Vian, Xavier Meynial, and Olivier Vuichard

The next steps: Four examples of Artec’s evolving room acoustics philosophy

Russell Johnson, Robert W. Wolff, Damian J. Doria, and Ashley Goodall

The ‘‘Cité de la Musique’’ in Paris and its elliptical concert hall

Daniel E. Commins

2pAB FISH ACOUSTICS

An experimental study of the peripheral auditory mechanics in the goldfish (Carassius auratus) and Oscar (Astronotus ocellatus)

Mardi C. Hastings, James J. Finneran, and Corrie J. Derenberger

A cohesive lumped parameter analysis of the mechanics of the goldfish peripheral auditory system

James J. Finneran and Mardi C. Hastings

Directional acoustic startle response in the goldfish

Thomas N. Lewis and Peter H. Rogers

Detection of ultrasound and marine mammal echolocation clicks by the American shad (Clupeidae)

David A. Mann, Zhongmin Lu, and Arthur N. Popper

Morphological responses of fish to low frequency sound

Joseph A. Clark, Jane A. Young, Amrit N. Bart, and Yonathan Zohar
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2pAB6</td>
<td>Evening fish choruses near coral reef systems in the Great Barrier Reef, Australia</td>
<td>Robert D. McCauley and Douglas H. Cato</td>
<td></td>
<td>1029</td>
</tr>
<tr>
<td>2pAB7</td>
<td>Mathematical model of echolocation of fish-eating bats</td>
<td>Anatoli Stulov</td>
<td></td>
<td>1031</td>
</tr>
</tbody>
</table>

2pAO SURF ZONE OCEANOGRAPHY AND ACOUSTICS II

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2pAO1</td>
<td>The generation of ambient noise due to breaking surf</td>
<td>James H. Wilson, Robert H. Bourke, and Josette P. Fabre</td>
<td></td>
<td>1033</td>
</tr>
<tr>
<td>2pAO2</td>
<td>Measurements of the space-time-frequency distribution of the noise in the surf zone</td>
<td>Richard M. Heitmeyer, Steven L. Means, Stephen C. Wales, Ellen S. Livingston, Jeffrey A. Schindall, and Marshall H. Orr</td>
<td></td>
<td>1035</td>
</tr>
<tr>
<td>2pAO3</td>
<td>SandyDuck '97 angle-time-frequency measurements of breaking wave noise</td>
<td>Ellen S. Livingston, Joal Newcomb, Richard M. Heitmeyer, Stephen C. Wales, and Steven L. Means</td>
<td></td>
<td>1037</td>
</tr>
<tr>
<td>2pAO4</td>
<td>Low- and high-frequency noise generation by breaking waves in the surf zone</td>
<td>Ali R. Kolaini and Jeffrey A. Nystuen</td>
<td></td>
<td>1039</td>
</tr>
<tr>
<td>2pAO5</td>
<td>A theoretical investigation of the low-frequency sound generated by breaking waves</td>
<td>M. R. Loewen and C. E. Farell</td>
<td></td>
<td>1041</td>
</tr>
<tr>
<td>2pAO6</td>
<td>Acoustic propagation in the ocean surf zone</td>
<td>Steven L. Means, Richard M. Heitmeyer, Stephen C. Wales, Thomas J. Hayward, Ellen S. Livingston, and Jeffrey A. Schindall</td>
<td></td>
<td>1043</td>
</tr>
<tr>
<td>2pAO7</td>
<td>Wind generated acoustic spectral effects in the surf zone in the presence and absence of rainfall at Duck, North Carolina</td>
<td>John R. Proni, John C. Wilkerson, and Peter G. Black</td>
<td></td>
<td>1045</td>
</tr>
<tr>
<td>2pAO8</td>
<td>Acoustic observations of suspended sediments in the Changjiang Estuary</td>
<td>Shuying Zhang, Zhong Shi, and Yunwu Li</td>
<td></td>
<td>1047</td>
</tr>
<tr>
<td>2pAO9</td>
<td>Motivations for using a pulsed full spectrum doppler to measure bedload and near bottom suspended sediment transport</td>
<td>Peter Traykovski, James D. Irish, and James F. Lynch</td>
<td></td>
<td>1049</td>
</tr>
<tr>
<td>2pAO10</td>
<td>Changes in acoustic impedance of marine sediment covered with liquid pollutants</td>
<td>Henning Harms, Rainer Matuschek, and Volker Mellert</td>
<td></td>
<td>1051</td>
</tr>
<tr>
<td>2pAO11</td>
<td>Scattering by two spheres: Theory and experiment</td>
<td>Irina Bjørnø and Leif Bjørnø</td>
<td></td>
<td>1053</td>
</tr>
<tr>
<td>2pAO12</td>
<td>Acoustic propagation affected by internal solitons in coastal area</td>
<td>E. C. Shang, Y. Y. Wang, and L. Ostrovsky</td>
<td></td>
<td>1055</td>
</tr>
</tbody>
</table>

2pBV HIGH INTENSITY THERAPEUTIC ULTRASOUND II

<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Location</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2pBV1</td>
<td>Optimal acoustic parameters for induced hyperthermia from focused ultrasound: Phantom measurements with fluid flow and bubble activity</td>
<td>R. Glynn Holt, Robin O. Cleveland, and Ronald A. Roy</td>
<td></td>
<td>1057</td>
</tr>
<tr>
<td>2pBV2</td>
<td>Numerical simulations of tissue heating created by high intensity focused ultrasound</td>
<td>Francesco P. Curra, Pierre D. Mourad, Robin Cleveland, Lawrence A. Crum, and Vera A. Khokhlova</td>
<td></td>
<td>1059</td>
</tr>
<tr>
<td>2pBV3</td>
<td>Occlusion of blood vessels using high intensity focused ultrasound</td>
<td>Shahram Vaey, Roy W. Martin, Peter Kaczkowski, George Keilman, Steve Carter, Michael Caps, and Lawrence A. Crum</td>
<td></td>
<td>1061</td>
</tr>
<tr>
<td>2pBV4</td>
<td>Occlusion of blood flow by high intensity focused ultrasound</td>
<td>Gail ter Haar, Ian Rivens, Ian Rowland, Mark Denbow, Nicholas Fisk, and Martin Leach</td>
<td></td>
<td>1063</td>
</tr>
<tr>
<td>2pBV5</td>
<td>Measurements of sound speed in excised tissue over temperatures expected under high intensity focused ultrasound conditions</td>
<td>Susannah H. Bloch, Michael R. Bailey, Lawrence A. Crum, Peter J. Kaczkowski,</td>
<td></td>
<td>1065</td>
</tr>
</tbody>
</table>
2pBV6 Role of cavitation during high intensity focused ultrasound treatment of prostate tissue ... 1067
Narendra T. Sanghvi

2pBV7 Transrectal high intensity ultrasound therapy of localized prostate cancer ... 1069
Jean Y. Chapelon, Albert Gelet, and Emmanuel Blanc

2pBV8 Concept of biological focal field and its importance in tissue resection with high intensity focused ultrasound ... 1071
Zhi B. Wang, Feng Wu, Zhi L. Wang, and Chuan Liu

2pBV9 Changes in ultrasonic images of tissue damaged by high intensity focused ultrasound in vivo ... 1073
Feng Wu, Zhi B. Wang, and Zhi L. Wang

2pBV10 Ultrasound-positioned high intensity focused ultrasound in the ablation of superficial bladder wall in miniswines .. 1075
Zhi B. Wang, Feng Wu, Zhi L. Wang, and Chuan Liu

2pBV11 Effects of high intensity focused ultrasound on H22 liver tumor: An evaluation with different therapeutic programs 1077
Feng Wu, Zhi B. Wang, and Zhi L. Wang

2pEA TOPICS IN ENGINEERING ACOUSTICS

2pEA1 Ultrasonic echoes obtained in the outdoor environment ... 1079

2pEA2 Modelling of electrostatic ultrasonic transducers with micro air-gap structures 1081
Li-Feng Ge

2pEA3 Control of particles in a standing wave field using ultrasonic vibration 1083
S. Nomura, K. Murakami, J. Ochi, and Y. Yoshikawa

2pEA4 Miniaturized ultrasonic sensor system for liquid analysis .. 1085
Bernd Henning, Peter-Christoph Daur, Alexander Wolf, Peter Hauptmann, and Alf Püttermann

2pEA5 The multicomponent composition of the low acoustic impedance matching layer for the ultrasonic transducer operating in the air 1087
Tadeusz Gudra

2pEA6 High-intensity ultrasound for dewatering of slurries ... 1089
Luis Elvira-Segura, Germán Rodríguez-Corral, Enrique Riera-Franco de Sarabia, and Juan A. Gallego-Juárez

2pEA7 Parametric array in air: Distortion reduction by preprocessing .. 1091
Thomas D. Kite, John T. Post, and Mark F. Hamilton

2pEA8 Acoustical imaging in air by a low-cost system working in audio band 1093
Andrea Trucco

2pEA9 Numerical analysis of high-intensity ultrasonic processing systems 1095
C. Campos-Pozuelo, B. Dubus, and J. A. Gallego-Juárez

2pEA10 A method of interpolating the diffractive information of the sphere-baffled microphone in the sound field of spherical wave 1097
Kimitoshi Fukudome

2pEA11 A conceptual experiment of direct converting digital microphone 1099
Yishinobu Yasuno and Yasuhiro Riko

2pEA12 Acoustic simulation for loudspeaker using FEM/BEM .. 1101
Veijo Ikonen, Antti Suutala, and Seppo Pohjolainen

2pEA13 Vibration characteristics of high frequency and complex vibration systems of 160 kHz to 1 MHz for ultrasonic wire bonding 1103
Jiromaru Tsujino and Hiroyuki Yoshihara

2pMU PHYSICS AND MATERIALS OF MUSICAL INSTRUMENTS II

2pMU1 Composite materials for musical instruments: The maturity ... 1105
Charles Besnainou
<table>
<thead>
<tr>
<th>Paper Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nonlinear effects in a vibrating string (wire)</td>
<td>1107</td>
</tr>
<tr>
<td>Roger J. Hanson, H. Kent Macomber, and Michael P. Kassakatis</td>
<td></td>
</tr>
<tr>
<td>On the acoustics and psychology of piano touch and tone</td>
<td>1109</td>
</tr>
<tr>
<td>Alexander Galembo, Anders Askenfelt, and Lola L. Cuddy</td>
<td></td>
</tr>
<tr>
<td>Dynamic mechanical measurements on violin wood and audience evaluation of violin tone quality</td>
<td>1111</td>
</tr>
<tr>
<td>Edwin R. Fitzgerald, Carleen M. Hutchins, and Morton A. Hutchins</td>
<td></td>
</tr>
<tr>
<td>Vibrational modes of a tenor steel pan</td>
<td>1113</td>
</tr>
<tr>
<td>Uwe J. Hansen and Thomas D. Rossing</td>
<td></td>
</tr>
<tr>
<td>Observation of the brass player’s lips in motion</td>
<td>1115</td>
</tr>
<tr>
<td>R. Dean Ayers</td>
<td></td>
</tr>
<tr>
<td>Detecting the number of degrees of freedom of a lip reed in brass-instrument playing</td>
<td>1117</td>
</tr>
<tr>
<td>Xavier Boutillon</td>
<td></td>
</tr>
<tr>
<td>Annular time-domain acoustic source for horn acoustics</td>
<td>1119</td>
</tr>
<tr>
<td>J. Agulló and A. Barjau</td>
<td></td>
</tr>
<tr>
<td>Determining resonance frequency changes due to bore irregularities in woodwinds</td>
<td>1121</td>
</tr>
<tr>
<td>Cornelis J. Nederveen and Jean-Pierre Dalmont</td>
<td></td>
</tr>
<tr>
<td>Modeling in 3D of directional radiation of curved woodwind instruments</td>
<td>1123</td>
</tr>
<tr>
<td>R. Caussé and C. Lheureux</td>
<td></td>
</tr>
</tbody>
</table>

2pNSa ENVIRONMENTAL NOISES FROM COMBINED SOURCES

<table>
<thead>
<tr>
<th>Paper Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactions to aircraft noise</td>
<td>1125</td>
</tr>
<tr>
<td>Truls Gjestland</td>
<td></td>
</tr>
<tr>
<td>The assessment of environmental noise—ISO 1996</td>
<td>1127</td>
</tr>
<tr>
<td>Ian H. Flindell and Nicole D. Porter</td>
<td></td>
</tr>
<tr>
<td>Loudness of combined noises derived from singular and concurrent community noises</td>
<td>1129</td>
</tr>
<tr>
<td>Birgitta Berglund and Mats E. Nilsson</td>
<td></td>
</tr>
<tr>
<td>Psychological evaluation of sound environment with mixed sources</td>
<td>1131</td>
</tr>
<tr>
<td>Sonoko Kuwano, Jiro Kaku, Tohru Kato, and Seiichiro Namba</td>
<td></td>
</tr>
<tr>
<td>Reaction to combined sources of noise may depend on the respondents’ interpretations of the questions</td>
<td>1133</td>
</tr>
<tr>
<td>R. F. Soames Job</td>
<td></td>
</tr>
<tr>
<td>Combined qualitative and quantitative measurements to evaluate noise from combined sources</td>
<td>1135</td>
</tr>
<tr>
<td>Brigitte Schulte-Fortkamp</td>
<td></td>
</tr>
<tr>
<td>Annoyance accumulation modeling in a community noise annoyance expert system</td>
<td>1137</td>
</tr>
<tr>
<td>Dick Botteldooren</td>
<td></td>
</tr>
<tr>
<td>Characterization of urban areas acoustical comfort</td>
<td>1139</td>
</tr>
<tr>
<td>Jacques Beaumont, Aline Barlet, Christophe Louverse, and Catherine Semidor</td>
<td></td>
</tr>
<tr>
<td>Vision influences the sound perception in an urban environment: An audio-visual approach</td>
<td>1141</td>
</tr>
<tr>
<td>Stephanie Viollon, Catherine Lavandier, and Carolyn Drake</td>
<td></td>
</tr>
</tbody>
</table>

2pNSb DAMAGE RISK CRITERIA FOR IMPULSE NOISE

<table>
<thead>
<tr>
<th>Paper Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The effects of exposure to intense freefield impulse noise on humans wearing hearing protection: Implications for new criteria</td>
<td>1143</td>
</tr>
<tr>
<td>James H. Patterson, Jr. and Daniel L. Johnson</td>
<td></td>
</tr>
<tr>
<td>Hearing protectors and hazard from impulse noise: Melding method and models</td>
<td>1145</td>
</tr>
<tr>
<td>G. Richard Price and Joel T. Kalb</td>
<td></td>
</tr>
<tr>
<td>Results of human studies with linear and nonlinear earplugs: Implications for exposure limits</td>
<td>1147</td>
</tr>
<tr>
<td>Armand L. Dancer and Pascal J. F. Hamery</td>
<td></td>
</tr>
</tbody>
</table>
2pNSb4
Modeling the effect of a hearing protector on the waveform of intense impulses

Joel T. Kalb and G. Richard Price

Page 1149

2pNSb5
A new nonlinear earplug for use in high level impulse noise environment

Armand L. Dancer and Pascal J. F. Hamery

Page 1151

2pPAAa
ACOUSTIC CHARACTERIZATION AND MANIPULATION OF MATERIAL PROPERTIES

2pPAA1
Directional microphone arrays for measurement in an anechoic wind tunnel

Robin J. Alfredson and Alison F. Wilson

Page 1153

2pPAA2
Phenomenological theory of the translational relaxation times in gases

Allan J. Zuckerwar

Page 1155

2pPAA3
An automated apparatus for measuring sound speeds in hazardous gases

John J. Hurley

Page 1157

2pPAA4
Acoustic flowmeter for the accurate metering of gases for semiconductor processing

Adam M. Calabrese and Stuart A. Tison

Page 1159

2pPAA5
Ultrasonic methods for the on-line real-time characterization of state-of-mixing

L. J. Bond, M. Meenaksh, and H. O. Matthiesen

Page 1161

2pPAA6
Water jets and a self-focusing shock pulse source

Bruce J. P. Mortimer and Beric W. Skews

Page 1163

2pPAA7
Measuring longer tubular objects using acoustic pulse reflectometry

David B. Sharp and D. Murray Campbell

Page 1165

2pPAA8
Temperature-scanning ultrasonic measurements in aqueous systems: What is new?

Dmitri P. Kharakoz

Page 1167

2pPAA9
Acoustic monitoring of the curing process in cement and concrete

B. R. Tittmann, H. M. Tavossi, and F. Cohen-Tenoudji

Page 1169

2pPAA10
Model experiments for cement bond evaluation with a transducer-contact-casing system

Qiao Wenxiao, Du Guangsheng, and Chi Shihong

Page 1171

2pPAA11
Acoustic measurements of condensation/evaporation and crystal growth

A. Petculescu and L. Wilen

Page 1173

2pPAA12
Anomalous excess noise in inhomogeneous elastic and piezoelastic solids

Alexander M. Dykhne, Victor V. Zosimov, Dmitrii V. Polyachenko, and Michael A. Olevanov

Page 1175

2pPAA13
Acoustic pulse diagnostics of relaxation media

German A. Maksimov and Vladimir A. Larichev

Page 1177

2pPAb
HALF-SPACES AND PLATES

2pPAb1
Leaky-Rayleigh wave detection at air-solid interfaces

Laszlo Adler, Michel de Billy, Christophe Mattei, and Gerard Quentin

Page 1179

2pPAb2
Theoretical and experimental studies of surface waves on plane solid–fluid interfaces when the fluid sound velocity is larger than the shear wave velocity in the solid

Frederic Padilla, Michel de Billy, and Gerard Quentin

Page 1181

2pPAb3
A modal reduction technique for the finite element formulation of Biot's poroelasticity equations in acoustics applied to multilayered structures

Franck C. Sgard, Noureddine Atalla, and Raymond Panneton

Page 1183

2pPAb4
Sound propagation in gas-filled rigid-framed porous media: General theory and new experimental and numerical data

Denis Lafarge, Michel Henry, Mouaouia Firdaouss, and Jean-Luc Guermond

Page 1185

2pPAb5
Nonlinear propagation of laser-generated sound pulses in a water and granular medium

Sergey V. Egerev, Igor B. Esiyov, Konstantin I. Matveev, Oleg B. Ovchinnikov, and Konstantin A. Naugolnykh

Page 1187
2pPAb6 High resolution spectroscopy of the Lamb modes of a plate near normal incidence . . . 1189
Guy Durinck, Willy Thys, Pascal Rembert, and Jean-Louis Izbicki

2pPAb7 Electric field influence on Lamb and SH wave properties in LiNbO$_3$ plates 1191
Srinivas G. Joshi, Boris D. Zaitsev, and Iren E. Kuznetsova

2pPAb8 Effects of sound and vibrations on tensions and deformations of a stratificated plate 1193
Florian-Paul I. Simion and Gabriela D. Simion

2pPP ASPECTS OF HEARING DEVELOPMENT

2pPP1 Development of active and passive processes in the gerbil cochlea 1195
David M. Mills and Edwin W. Rubel

2pPP2 Development of human cochlear function ... 1197
Carolina Abdala

2pPP3 Evidence of prenatal hormonal effects on the auditory system 1199
Dennis McFadden

2pPP4 Human auditory system maturation: A neurophysiological comparison between normal-hearing children and children who use a cochlear implant 1201
Curtis W. Ponton, Manuel Don, Betty Kwong, Michael D. Waring, and Jos J. Eggermont

2pPP5 Psychoacoustic development in humans and the effects of otitis media on psychoacoustic development ... 1203
Joseph W. Hall, III and John H. Grose

2pPP6 Excessive auditory backward masking and its potential remediation in children with specific language impairment ... 1205
Beverly A. Wright

2pPP7 Frontiers and backwaters of research on the biological bases of hearing development 1207
Edwin W. Rubel

2pSA MEMORIAL SESSION FOR MANFRED HECKL

2pSA1 Active control of curve squeal caused by trains .. 1209
Maria A. Heckl

2pSA2 Realisation of the Cremer admittance of silencer linings with passive absorber elements .. 1211
F. P. Mechel

2pSA3 The influence of barrier edge treatments ... 1213
Michael Möser

2pSA4 Induced damping in Heckl’s beam experiment .. 1215
David Feit and Murray Strasberg

2pSA5 Waveguide absorbers for structural damping .. 1217
Eric E. Ungar

2pSA6 Manfred Heckl and SEA—Early days at BBN .. 1219
Richard H. Lyon

2pSA7 The estimation and control of rolling noise from trains ... 1221
Paul Remington

2pSA8 The multipole method: Contributions of Manfred Heckl and new developments for high-frequency acoustic scattering ... 1223
Martin Ochmann

2pSA9 Acoustics teaching and Manfred Heckl ... 1225
Thomas D. Rossing

2pSA10 The use of tuned absorbers in minimizing sound power from vibrating structures 1227
Gary H. Koopmann, Eric W. Constans, and Ashok D. Belegundu

2pSA11 Recollections of Professor Manfred Heckl .. 1229
Gideon Maidanik
2pSA12 Concentrated lateral excitation of structures 1231
Björn A. T. Petersson

2pSA13 Measurements of multi-component point mobilities on deep beams and thick plates 1233
Christ de Jong and Björn Petersson

2pSC PROSODY, PRODUCTION, AND VOICE

2pSC1 The domain of phrase-final lengthening in English .. 1235
Stefanie Shattuck-Hufnagel and Alice Turk

2pSC2 Ambiguity in prominence perception in spoken utterances of American English 1237
L. C. Dilley and S. Shattuck-Hufnagel

2pSC3 Intonation of noun phrases in Unangan (Eastern Aleut) 1239
Alice Taff and Jacob Wegelin

2pSC4 Vowel devoicing and the loss of lexical accent in Tokyo Japanese 1241
Mafuyu Kitahara

2pSC5 The effect of stress on vowel length in Aleut ... 1243
Lorna Rozelle

2pSC6 Temporal structuring of acoustic segments in speech communication 1245
Rodmonga K. Potapova

2pSC7 Influence of functional and acoustic parameters of intonation contours on prosody lateralization ... 1247
Marc D. Pell

2pSC8 Syntactic ambiguities and their resolution in prosody: Observations in Japanese, Korean, Mongolian and Turkish .. 1249
Young-Sook Choi and Shigeru Sato

2pSC9 The effects of discourse focus and lexical accent on F_0 in Japanese 1251
Young-Sook Choi and Shigeru Sato

2pSC10 Effects of prosodic structure and speech rate on consonant weakening 1253
Lisa M. Lavoie

2pSC11 Intergestural coordination adjacent to multiple prosodic boundaries 1255
Dani Byrd

2pSC12 Non-traditional acoustic features of focus .. 1257
H. Timothy Bunnell, Steven R. Hoskins, and Debra M. Yarrington

2pSC13 Baby-word rhythm preferences of Japanese infants ... 1259
Akiiko Hayashi, Kyoko Yoshioka, and Reiko Mazuka

2pSC14 The relationship between spectral properties and perceptual evaluation of hypernasality in children with cleft palate—vowel /i/ .. 1261

2pSC15 Effects of levodopa on finger and articulatory movements in Parkinson’s disease 1263
Michele Gentil, Claire-Lise Tournier, and Pierre Pollak

2pSC16 Stop-consonant production by dysarthric speakers: Use of models to interpret acoustic data ... 1265
Kelly L. Poort

2pSC17 Formant trajectory characteristics in persons with Parkinson, cerebellar, and upper motor neuron disease ... 1267
Gary Weismer and Jill Wildermuth

2pSC18 The effects of utterance length on temporal control in aphasia 1269
Shari R. Baum

2pSC19 Source modeling of severely pathological voices .. 1271
Bruce R. Gerratt, Jody Kreiman, Norma Antonanzas-Barroso, Brian Gabelman, and Abeer Alwan

2pSC20 Speaking rate-induced acoustic variability in Parkinson’s disease 1273
Kris Tjaden, Sylvia Farrens, Kathryn Geaney, Paul McRae, and Jean Nachtman

2pSC21 A comparative study of speech motor programming in stutterers and non-stutterers ... 1275
N. Aravind and S. R. Savithri
2pSC22 Modeling of articulatory dynamics using cascaded first-order systems 1277
 Yorinobu Sonoda and Kohichi Ogata
2pSC23 Testing a normalization procedure for articulatory recovery .. 1279
 Richard S. McGowan
2pSC24 A task-dynamic approach to gestural anticipation in speech: A hybrid recurrent
 network .. 1281
 Elliot Saltzman and Suvo Brata Mitra
2pSC25 An interactive construction system of 3-D vocal tract shapes from tomograms 1283
 Tohru Yokoyama, Nobuhiro Miki, and Yoshihiko Ogawa
2pSC26 Palate shape effects on characteristic vowel tongue postures .. 1285
 Mark K. Tiede
2pSC27 Characteristics of phonation offset and onset in normal adults and children 1287
 Laura L. Koenig
2pSC28 Speaker identification using noncontemporary speech samples 1289
 Harry Hollien and Reva Schwartz
2pSC29 Perception of intoxication effects on speech ... 1291
 Harry Hollien and Gea De Jong
2pSC30 Perceptually-motivated modeling of noise in pathological voices 1293
 Brian Gabelman, Jody Kreiman, Bruce R. Gerratt, Norma Antonanzas-Barroso, and Abeer Alwan
2pSC31 A perceptual and acoustic study of the imitated voice .. 1295
 Kirk P. H. Sullivan and Frank Schlichting
2pSC32 Acoustic analysis of the effects of alcohol on the human voice 1297
 Orla M. Cooney, Kevin G. McGuigan, Peter J. P. Murphy, and Ronán M. Conroy
2pSC33 The use of random spliced speech for the recognition of familiar voices 1299
 Ricardo M. de Figueiredo

2pSPa MULTICHANNEL SIGNAL PROCESSING FOR ACOUSTICAL APPLICATIONS

2pSPa1 Reconstruction and projection of interior sound fields using a spherical
 measurement array .. 1301
 Earl G. Williams
2pSPa2 Multichannel acoustical measurement for sound field mapping 1303
 Svend Gade and Jørgen Hald
2pSPa3 Signal processing for sound capture .. 1305
 Daniel V. Rabinkin, Richard J. Renomerom, Atul Sharma, and James L. Flanagan
2pSPa4 Modelling in-vehicle engine noise (listen to the noise paths) .. 1307
 F. Deblauwe, P. Van de Ponseele, and G. Lowet
2pSPa5 Localisation of acoustic emissions in aerospace structures .. 1309
 Paul Wells, Arthur Stephens, and Andy Ibbotson
2pSPa6 Imaging of supersonic surface fields on a cylindrical shell .. 1311
 Charles N. Corrado, Jr., Daniel T. DiPerma, and Matthew Conti
2pSPa7 Holographic reconstruction of active sources in three-dimensional enclosure 1313
 Young-Key Kim, Yang-Hann Kim, Byeongsik Ko, and Kangho Ko
2pSPa8 Estimation of farfield pressures from geometric nearfield measurements 1315
 Daniel T. DiPerma, Charles N. Corrado, Jr., and David C. Warwick
2pSPa9 Feasibility of using imperfect microphone arrays in noise source location 1317
 Tarun Bhatt, Corinne M. Darvennes, and J. Richard Houghton
2pSPa10 Super directivity design for a sphere-buffed microphone array 1319
 Kazuhiko Kawahara and Kimitoshi Fukudome
2pSPa11 Beamforming for broadband constant beamwidth through FIR and DSP
 implementation .. 1321
 Yuanliang Ma, Baosong Zhang, Wei Ding, and Huigang Wang
2pSPb IMPLEMENTATION ISSUES OF ACOUSTICAL SIGNAL PROCESSING IN REAL TIME SYSTEMS II

2pSPb1 FFT beamforming with cylindrical arrays: Application to the toroidal volume search sonar
Timothy C. Gallaudet and Christian P. de Moustier

2pSPb2 Acoustic source estimation based on physical modeling and optimization algorithm
A. J. Amditis, K. S. Nikita, and N. K. Uzunoglu

2pSPb3 Kalman based time varying DOA estimation robust to impulsive noise
Han-Su Kim and Koeng-Mo Sung

2pSPb4 An universal parallel sonar signal processing system
Lifu You, Enfang Sang, and Jingyi Zhao

2pSPb5 Maximum likelihood track-before-detect matched-field beamforming with SWellEx data
Kerem Harmancı, Joseph Tabrikian, and Jeffrey L. Krolik

2pUW SCATTERING AND REVERBERATION

2pUW1 The effects of bandwidth, dispersion and correlation length scale on shallow water reverberation
Kevin D. LePage

2pUW2 High frequency acoustic scattering from thermally generated turbulence
John Oeschger

2pUW3 Range spread measurement of underwater scatterers and channels using active sonar probing signals and a cross correlation process
James J. Kisenwether and Dennis W. Ricker

2pUW4 Target size measurements via specular echo spectrum
Jérôme Mathieu, Patrick Schweitzer, Etienne Tisserand, Serge Weber, and Serge Gauthier

2pUW5 The extraction of a target scattering response from measurements made in a range-dependent shallow water environment
Angie Sarkissian

2pUW6 Formalism for boundary scattering in waveguides
David H. Berman

2pUW7 Backscattering by layered media: Modeling and comparison with data
Laurent Guillou and Xavier Lurton

2pUW8 Measurement at 50–150 kHz of absorption due to suspended particulate matter
Niven R. Brown, Timothy G. Leighton, Simon D. Richards, and Anthony D. Heathershaw

2pUW9 Turbidity in future high frequency sonar performance models
Simon D. Richards, Niven R. Brown and Timothy G. Leighton

2pUW10 Spectral diffusion of seismo-acoustic waves in shallow water
Robert I. Odom and Valerie I. Peyton

2pUW11 Experimental verification of the deformed cylinder scattering model and its application to the calculation of backscattering from fish
Kouichi Sawada, Zhen Ye, and Masahiko Furusawa

2pUW12 Comparison between subcritical penetration models and in situ data
Alain Maguer, Edoardo Bovio, Warren Fox, Eric Pouliquen, and Henrik Schmidt

2pUW13 Subcritical penetration into a viscoelastic solid due to interface roughness—Laboratory experiment and perturbation theory model
Garfield R. Mellema, Terry E. Ewart, and Kevin L. Williams

2pUW14 Aspects of a damped surface wave in the Fourier diamond spaces. New surface wave analysis methods (S.W.A.M.)
Loïc Martinez, Jean Duclos, and Alain Tinel

2pUW15 Aspects of cylindrical shell resonances in the Fourier diamond spaces. Use of surface wave analysis methods (S.W.A.M.) on experimental or numerical data
Loïc Martinez, Jean Duclos, and Alain Tinel

B33
2pUW16 New experimental characterization of a resonance: Identification of the mode number using the Argand diagram and the GTD approach 1363
 Serge Derible, Jean-Marc Conoir, Jean-Louis Izbicki, and Pascal Rembert
2pUW17 Scholte wave dispersion by rippled liquid/solid interface topography 1365
 Jacques R. Chamuel
2pUW18 Scatterer depth estimation using broadband active matched field processing 1367
 Brian K. Jennison, C. Allan Boyles, and Kevin J. McCann
2pUW19 The detection of cylindrical objects of low acoustic contrast buried in the seabed ... 1369
 Ruthven C. Evans and Timothy G. Leighton
2pUW20 Characteristics of semi-buried object in shallow water 1371
 Shi-e Yang and Xiu-kun Li

2pPLb PLENARY LECTURE

2pPLb1 Representation of complex stimuli in the peripheral auditory system 1373
 Eric D. Young, Barbara M. Calhoun, Jane J. Yu, and Israel Nelken

3aPLa PLENARY LECTURE

3aPLa1 How listeners find the right words .. 1377
 Anne Cutler

3aAAa STRUCTURE-BORNE SOUND IN BUILDINGS:
 MEASURING AND MODELING NOISE FLANKING TRANSMISSION

3aAAa1 Sound transmission through permeable double-leaf membranes 1381
 Kimihiro Sakagami, Masakazu Kiyama, Toru Uyama, and Masayuki Morimoto
3aAAa2 Prediction of noise transmission through commercial profiled metal cladding
 systems ... 1383
 Y. W. Lam
3aAAa3 European prediction models for building acoustics 1385
 Eddy Gerretsen
3aAAa4 Structure-borne transmission in lightweight buildings 1387
 Robert J. M. Craik
3aAAa5 Flanking paths between wood frame walls and floors using statistical energy
 analysis .. 1389
 T. R. T. Nightingale and John A. Steel
3aAAa6 The use of semi-analytical calculation models to verify SEA predictions of flanking
 transmission in building structures 1391
 Ivan Bosmans and Gerrit Vermeir

3aAAb IMPACT OF TRAINS ON PERFORMANCE HALLS

3aAAb1 Owner/builder perspective of the impact of trains on performance halls for
 Benaroya Hall, Seattle, Washington .. 1393
 Andrew Clapham
3aAAb2 Vibration isolation design for Benaroya Hall ... 1395
 George Paul Wilson
3aAAb3 Structural design for vibration isolation at Benaroya Hall 1397
 Brian H. Glover
3aAAb4 Controlling subway noise in LG Arts Center—Sangnam Hall 1399
 Ahmad K. Abdehrazzaq and D. Stanton Korista
3aAAb5 Train and rail transit noise in cinemas and theatres: Case studies 1401
 M. Asselineau
3aAB GENERAL ANIMAL BIOACOUSTICS

3aAB1 Three-dimensional computer modeling of biosonar emission in the common dolphin ... 1403
James L. Aroyan

3aAB2 Acoustic pathways of hearing in the bottlenose dolphin, *Tursiops truncatus* ... 1405
Whitlow W. L. Au, Bertel Mohl, Paul E. Nachtigall, Jeffrey Pawloski,
and James Aroyan

3aAB3 Effects of low frequency seismic exploration sounds on the distribution of cetaceans in the Northern Gulf of Mexico .. 1407
Shannon Rankin and William E. Evans

3aAB4 An onboard acoustic data logger to record biosonar of free-ranging bottlenose dolphins ... 1409
Douglas P. Nowacek, Peter L. Tyack, Randall S. Wells, and Mark P. Johnson

3aAB5 Results of underwater ambient noise measurements in three large tank exhibits at the Monterey Bay Aquarium .. 1411
Daniel Matthew O’Neal and Steven R. Baker

3aAB6 Identification of dolphin schools by bio-acoustical unique features ... 1413
Konstantin Kebkal, Rudolf Bannasch, and Valery Kulagin

3aAB7 Matched field processing of blue whale vocalizations using calibrated environmental models .. 1415
Aaron M. Thode, Gerald L. D’Spain, and William A. Kuperman

3aAB8 Feasibility of monitoring bowhead whales with a vertical line array ... 1417
Kevin D. Heaney and Peter N. Mikhalevsky

3aAB9 Observations of the movements of humpback whales about an operating seismic survey vessel near Exmouth, Western Australia 1419
Robert D. McCauley, Micheline-Nicole Jenner, Curt Jenner, and Douglas H. Cato

3aAO ACOUSTIC DETERMINATION OF OCEAN PARAMETERS

3aAO1 Applications of two frequency insonification techniques to oceanic bubble sizing .. 1421
Andy D. Phelps, Matt D. Simpson, and Timothy G. Leighton

3aAO2 Possibilities for small-scale emission tomography of bubble plumes in shallow water .. 1423
Ivan P. Smirnov, Jerald W. Caruthers, Paul Elmore, and Alexander I. Khil’ko

3aAO3 Monitoring air-sea exchange using ambient sound ... 1425
Jeffrey A. Nystuen

3aAO4 Acoustic wave scattering and propagation in bubbly liquids ... 1427
Zhen Ye and Alberto Alvarez

3aAO5 Rough surfaces characterization using a time-reversal mirror ... 1429
Philippe Roux, Julien de Rosny, Mathias Fink, and James H. Rose

3aAO6 The Aharonov-Bohm effect revisited by an acoustic time-reversal mirror ... 1431
Philippe Roux, Julien de Rosny, and Mathias Fink

3aAO7 Real time characterization of unstationary flows using a time reversal mirror ... 1433
Philippe Roux, Agnès Maurel, Julien De Rosny, Sébastien Manneville, and Mathias Fink

3aAO8 Results from cross-correlation measurement of estuarine current velocity ... 1435
Roger W. Bland and Daniel G. Neuman

VOLUME III

3aBV ULTRASOUND ASSISTED DRUG DELIVERY I

3aBV1 Mechanisms for biological effects of ultrasound ... 1437
Edwin L. Carstensen
Toxin and gene transfer into cells by extracorporeal shock waves: in vitro and in vivo effects 1439
Michael Delius and Ulrich Lauer

Ultrasound induced transcutaneous transport for drug delivery and diagnostics 1441
Joseph Kost, Samir Mitragotri, and Robert Langer

Ultrasound for the mediation of a therapeutic agent through the blood-brain barrier ... 1443
Leonard J. Bond and Lawrence Ka-yun Ng

Mechanistic studies of ultrasonically-enhanced transdermal drug delivery 1445

Enhancement of ultrasound mediated transfection with cavitation micronuclei 1447
James F. Greenleaf, William J. Greenleaf, Randy Kinnick, Gobinda Sarkar, and Mark A. Bolander

Defects of biolayers generated by ultrasound .. 1449
M. S. Malghani, Jie Yang, and Junru Wu

Selected topics in electroacoustical calibrations, measurements and standards 1451
Victor Nedzelniitsky

Progress in silicon microphones ... 1453
Gerhard M. Sessler

Design and properties of face to face coupler for microphone comparison calibration .. 1455
Erling Frederiksen and Jørgen I. Christensen

Controlled environment for reciprocity calibration of condenser microphones 1457
George S. K. Wong and Lixue Wu

Procedures for the precision of sound power determination by S. I. scanning method .. 1459
Hideki Tachibana and Hideo Suzuki

Experimental study on the accuracy of sound power determination of S. I. scanning method .. 1461
Hiroo Yano, Hideki Tachibana, and Hideo Suzuki

Electroacoustics and standards: Microphones for sound level measurements 1463
Gunnar Rasmussen

A study of long-term sensitivity changes in backplate of electret type condenser microphones .. 1465
Kenzo Miura and Yoshinobu Yasuno

Measurement of microphone random-incidence and pressure-field responses and determination of their uncertainties .. 1467
Johan Gramtorp and Erling Frederiksen

Measuring system for the derivation of thermal loudspeaker parameters 1469
G. K. Behler and A. Bernhard

Studies in bowing point friction in bowed strings .. 1471
Robert T. Schumacher

Modal analysis of violins and cellos ... 1473
Thomas D. Rossing, Mark Roberts, Eric Bynum, and Laura Nickerson

A normal-mode-based model of violin radiation .. 1475
George Bissinger

Influence of the weight of mutes on tones of a violin family 1477
Kenshi Kishi

Anomalous low frequencies from a bowed violin string .. 1479
Roger J. Hanson and Frederick W. Halgedahl
Acoustical aspects of chamber music for strings 1481
Juergen Meyer

Radiation mechanisms of a violin with known modal characteristics 1483
Lily M. Wang and Courtney B. Burroughs

Behavior of real violin strings, mechanically bowed 1485
Norman C. Pickering and Michael P. Kerr

3aNSa LOW-FREQUENCY NOISE

A new way of reducing self-sustained flow noise 1487
Rene Henry, Anas Sakout, Alex Coiret, and Aziz Hamdouni

A new approach to low frequency room noise criteria 1489
Robert D. Hellweg, Jr and Hsien-sheng (Jason) Pei

Parameters involved in low frequency noise annoyance 1491
Ulf Landstrom

The effects of age on annoyance caused by low frequency noise 1493
Bridget M. Shield and Rukhsana Adam

3aNSb TIRE NOISE

The investigation of a towed trailer test for passenger tire coast-by noise measurement ... 1495
James K. Thompson and Thomas A. Williams

Assessment of tire/pavement interaction noise under vehicle passby test conditions using sound intensity measurement methods 1497
Paul R. Donavan, Richard F. Schumacher, and Jeffrey R. Stott

The influence of belt and tread band stiffness on the tyre noise generation mechanisms ... 1499
Wolfgang Kropp, Kristian Larsson, and Stephane Barrelet

Identification of sources of tire/pavement interaction noise 1501
Richard J. Ruhala and Courtney B. Burroughs

Effects of the acoustical characteristics of road pavements on long range sound propagation ... 1503
Michel C. Berengier, Jean-Francois Hamet, and Yves Pichaud

Acoustic modeling of road vehicles for traffic noise prediction: Determination of the sources heights ... 1505
Jean-Francois Hamet, Marie-Agnès Pallas, David Gaulin, and Michel C. Berengier

Modelling of tangential contact forces .. 1507
Kristian Larsson, Stephane Barrelet, and Wolfgang Kropp

Computational and subjective procedures for the assessment of sounds with weak tonal components ... 1509
Peter Daniel, Wolfgang Ellermeier, and Matthias Vormann

3aNSc OCCUPATIONAL NOISE EXPOSURE MONITORING: INSTRUMENTATION, METHODS, AND HISTORIES

Instrumentation for the measurement of occupational noise exposure: Past, present, and future ... 1511
Theodore J. Kuemmel

Occupational noise measurement standard: ANSI S12-19 1513
Richard Goodwin

What are we still doing wrong in assessing occupational noise exposure? 1515
Daniel L. Johnson

Potential contamination of noise exposure measurements when using noise dosimeters ... 1517
Larry H. Royster and Julia Doswell Royster
<table>
<thead>
<tr>
<th>3aNSc5</th>
<th>Sound exposure profiling: A noise exposure assessment alternative</th>
<th>1519</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Robert R. Anderson and Lee D. Hager</td>
<td></td>
</tr>
<tr>
<td>3aNSc6</td>
<td>Unusual jobs require unusual methods for noise exposure measurement</td>
<td>1521</td>
</tr>
<tr>
<td></td>
<td>John P. Barry</td>
<td></td>
</tr>
<tr>
<td>3aNSc7</td>
<td>Investigation of intermittency in the noise exposure pattern of longwall coal miners</td>
<td>1523</td>
</tr>
<tr>
<td></td>
<td>J. Alton Burks and Roy C. Bartholomae</td>
<td></td>
</tr>
<tr>
<td>3aNSc8</td>
<td>Hearing hazard evaluation and hearing conservation in a very reverberant indoor firing range</td>
<td>1525</td>
</tr>
<tr>
<td></td>
<td>Felix Z. Sachs</td>
<td></td>
</tr>
<tr>
<td>3aNSc9</td>
<td>Noise from sandblasting/Personnel noise exposure</td>
<td>1527</td>
</tr>
<tr>
<td></td>
<td>Tønnes A. Ognedal and Rune Harbak</td>
<td></td>
</tr>
<tr>
<td>3aNSc10</td>
<td>Occupational noise and solvent exposure in the printing industry</td>
<td>1529</td>
</tr>
<tr>
<td></td>
<td>Beno Groothoff and Rande Ferris</td>
<td></td>
</tr>
</tbody>
</table>

3aPAa SONOCHEMISTRY AND SONOLUMINESCENCE: SC I

3aPAa1	Under which conditions is sonochemistry able to give information about the so-called extreme conditions prevailing inside the collapsing bubbles?	1531
	Jacques Reisse, Kristin Bartik, and Nicolas Segebarth	
3aPAa2	Sonochemical preparation of protein microspheres	1533
	Kenneth S. Suslick	
3aPAa3	Sonochemistry of aqueous solutions: EPR and spin trapping studies of radical intermediates	1535
	Peter Riesz and Vladimir Mišik	
3aPAa4	Sonochemistry and sonoluminescence in aqueous solutions containing surface active solutes	1537
	Franz Grieser, Muthupandian Ashokkumar, Rachel A. Caruso, Katrina Barbour, and Paul Mulvanevy	
3aPAa5	Sonochemical reactor optimization using computational acoustics techniques	1539
	Jean-Louis Y. Migeot	
3aPAa6	Sonochemistry—A demonstration lecture	1541
	Timothy J. Mason	
3aPAa7	The effects of organic compound doping in single-bubble sonoluminescence	1543
	Muthupandian Ashokkumar, Franz Grieser, William B. McNamara III, Kenneth S. Suslick, Thomas J. Matula, C. Allen Frensley, and Lawrence A. Crum	
3aPAa8	An interpretation of the MBSL temperatures deduced from metal atom emission	1545
	Lawrence S. Bernstein	

3aPAb NONLINEAR ACOUSTICS I: 1. HISTORY; 2. SOLIDS, ROCKS; 3. SURFACE WAVES, PART 1

3aPAb1	Development of solid state nonlinearity	1547
	M. A. Breazeale	
3aPAb2	Acoustic nonlinearities in earth solids	1549
	Lev A. Ostrovsky and Paul A. Johnson	
3aPAb3	Model equations for nonlinear surface waves	1551
	M. F. Hamilton, Yu. A. Il’inskii, and E. A. Zabolotskaya	
3aPAb4	Principles and applications of nonlinear acoustic nondestructive testing	1553
	Alexander Sutin and Dimitri M. Donskoy	
3aPAb5	Measurements of surface-wave harmonic generation in nonpiezoelectric materials	1555
	D. C. Hurley	
3aPAb6	Pulsed nonlinear surface acoustic waves in crystals	1557
3aPAb7	Rayleigh wave solitons in layered media	1559
	Robert I. Odom	
Nondestructive flaw detection in a solid material using nonlinear acoustic responses
C. M. Song, K. I. Jung, and S. W. Yoon

Slow nonlinear dynamics in rock
R. A. Guyer, K. R. McCall, and K. E.-A. Van Den Abeele

Slow dynamics and nonlinear response at low strains in Berea sandstone
James A. TenCate and Thomas J. Shankland

3aPP AUDITORY ATTENTION I

Divided attention to simultaneous stimulation
Ervin R. Hafter, Anne-Marie Bonnel, and Erick Gallun

Crossmodal links between auditory and visual attention
Charles Spence and Jon Driver

Auditory objects of attention
C. J. Darwin and R. W. Hukin

Perceiving talking faces: Insights into auditory attention
Dominic W. Massaro

Electrophysiological studies of auditory spatial attention
Steven A. Hillyard and Wolfgang Teder-Salejarvi

3aSA DAMPING AND ABSORPTION

An algorithm for calculation of material loss factors using single degree of freedom method and digital data measured by FFT analyzer
Toshiyuki Maeda

Dynamic and acoustic properties of beams of composite material
Shiva Sander Tavallaey

Acoustic spectropic determination of dynamic elastic moduli and internal friction coefficient
Qiushuang Guo and David A. Brown

Numerical method using filter banks for vibroacoustic analysis in the medium frequency range
S. Gorog and P. Micheau

Improvement of damping via analysis of viscoelastic composites
Ibrahima Sow, Jean Nicolas, Toan Vu-Khanh, and Olivier Beslin

Vibration damping characteristics of the concrete material included easy moving particles
Noboru Ishikawa and Hidemaro Shimoda

Finite-element modelling of the vibro-acoustical behavior of poro-elastic materials
Hamid Bouhioui and Murray Hodgson

Numerical analysis of damping added by a foam layer on a vibrating plate
Nicolas Dauchez, Souhi Sabraoui, and Noureddine Atalla

On the use of assumed spatial distributions for the vibration analysis of built-up plate structures
R. A. Fulford and B. A. T. Petersson

Statistical analysis of boundary sound absorption in a panel-cavity system
K. S. Sum and J. Pan

Sound transmission through multilayer structures with isotropic elastic porous materials
Noureddine Atalla, Raymond Panneton, and Patricia Debergue

3aSC LANGUAGE SPECIFIC INFLUENCES DURING INFANCY

Bilingual exposure and some consequences on native-language recognition processes at four months
Laura Bosch
3aSC2 Effects of language experience on speech perception 1601
Patricia K. Kuhl

3aSC3 Vowel perception in the first year of life ... 1603
Linda Polka and Ocke-Schwen Bohn

3aSC4 Developing sensitivity to native language sound patterns 1605
Peter W. Jusczyk

3aSC5 Updates on becoming a native listener ... 1607
Janet F. Werker, Judith E. Pegg, Rushen Shi, and Christine Stager

3aSC6 Rapid gains in the speed and efficiency of word recognition by infants in the second year ... 1609
Anne Fernald, Daniel Swingley, and John P. Pinto

3aUW BOTTOM GEOACOUSTIC CHARACTERIZATION AND INVERSION I

3aUW1 Measuring parameters that control acoustic propagation in granular sediments near the sea floor ... 1611
Robert D. Stoll

3aUW2 Matched-field inversion in a range-dependent waveguide 1613
Martin Musil, John M. Ozard, and Michael J. Wilmut

3aUW3 Numerical analysis on inversed bottom geoacoustic models for prediction of shallow-water acoustic field ... 1615
Jin Guoliang and Zhang Renhe

3aUW4 A multi-frequency inversion method for geoacoustic parameters 1617
Renhe Zhang, Fenghua Li, and Wenyu Luo

3aUW5 Geoaoustic parameter inversion from waveform structure 1619
Fenghua Li and Renhe Zhang

3aUW6 Geophysical measurements on marine sediment cores and geo acoustic modelling ... 1621
Philip P. Thomson, John I. Dunlop, and Frank Neissen

3aUW7 Verification of a library for categorizing bottom substrate type 1623
John Hedgepeth, Colleen Sullivan, Robert Sullivan, and Patrick Schneider

3aUW8 A measuring method for shear wave velocity of marine sediment using radiation impedance .. 1625
Masao Kimura

3aUW9 Measurements of high-frequency acoustic scattering from seabed vegetation ... 1627
Anthony P. Lyons and Eric Pouliquen

3aUW10 Use of Scholte waves to determine the shear wave velocity structure in marine sediments ... 1629
Sayuri Kawashima and Masao Kimura

3aUW11 Simplex simulated annealing: A hybrid approach to geoacoustic inversion 1631
Mark R. Fallat and Stan E. Dosso

3aUW12 Physical parameter uncertainty effect on frequency dependent acoustic response in ocean sediment ... 1633
Yongke Mu, Mohsen Badiey, and Alexander H-D. Cheng

3aUW13 Inversion of explosive shallow water transmission loss data to obtain acoustic seabed models ... 1635
Marshall V. Hall

3aUW14 The development of the multibeam echosounder: A historical account 1637
Ståle Vilming

3aUW15 A comparison of Hankel transform algorithms’ performance for use in shallow water applications ... 1639
Ben Cox and Philip Joseph

3aUW16 Comparison of the performances of global optimization methods with perturbative methods in the estimation of ocean bottom properties from multi-frequency data 1641
Subramaniam D. Rajan

3aUW17 Performance evaluation of horizontal and vertical vector sensor arrays in shallow water environments ... 1643
Peter Gerstoft and Joo Thiam Goh
3aUW18 Range-dependent environmental mismatch in matched field tomography 1645
 Ronald T. Kessel
3aUW19 Application of coordinate rotation to inversion for sediment parameters 1647
 John S. Perkins, Michael D. Collins, and Laurie T. Fialkowski
3aUW20 Offshore geoacoustic inversions using sounds from land vehicle activity 1649
 G. L. D'Spain, L. P. Berger, W. A. Kuperman, and W. S. Hodgkiss
3aUW21 The multiple scattering interactions of cobbles and pebbles lying on the ocean floor 1651
 C. Feuillade and R. W. Meredith

3aPLb PLENARY LECTURE

3aPLb1 Stochastic effects in ocean acoustics. Advances in theory and experiment 1653
 B. J. Uscinski

3pPL PLENARY LECTURE

3pPL1 Marine mammal ears: An anatomical perspective on underwater hearing 1657
 Darlene R. Ketten

3pAA VERN O. KNUDSEN DISTINGUISHED LECTURE

3pAA1 Concert hall research: Balancing complexity with practicality 1661
 J. S. Bradley

3pAO ACOUSTICS OF FISHERIES AND PLANKTON I

3pAO1 An intermediate range sonar for fish detection ... 1663
 David M. Farmer, Mark V. Trevorrow, and Bjarke Pedersen
3pAO2 Shallow water salmon and herring detection using 100 kHz sidescan sonars 1665
 Mark V. Trevorrow, David M. Farmer, and Bjarke Pedersen
3pAO3 Multi-beams sonar image processing and three dimensional analysis of fish schools 1667
 Chafiaa ˆ Hamitouche, Vale ´ rie Burdin, Carla Scalabrin, and Laurent Lecornu
3pAO4 Near-resonance scattering from schooling fish .. 1669
3pAO5 Sound scattering from a few scatterers: Application to swimbladder fish 1671
 Alberto Alvare Zealand and Zhen Ye

3pBV ULTRASOUND ASSISTED DRUG DELIVERY II

3pBV1 Chemopotentiation by low-level ultrasound .. 1673
 George H. Harrison and Elizabeth K. Balcer-Kubiczek
3pBV2 Sonochemistry of sonodynamic therapy ... 1675
 Peter Riesz and Vladimir Mišik
3pBV3 Gene activation and gene delivery with ultrasound .. 1677
 Evan C. Unger, Thomas P. McCleery, Robert H. Sweitzer, Vernoica E. Caldwell,
 and Annmarie Santanen
3pBV4 Ultrasound activation of new drugs for killing cancer cells 1679
 Katsuro Tachibana and Toshiki Uchida
3pBV5 Control of ultrasound-mediated reversible membrane permeabilization for targeted
 drug delivery ... 1681
 Mark R. Prausnitz, Keyvan Keyhani, Aimee Parsons, and Thomas N. Lewis

B41
3pEA ADVANCED TRANSDUCTION MATERIALS

3pEA1 Efficiency and electromechanical resonance in magnetostrictive transducers Frederick T. Calkins and Alison B. Flatou 1683
3pEA2 A study of 1-3 piezocomposite high drive limits ... Thomas R. Howarth, David Van Tol, Charles Allen, and W. Jack Hughes 1685
3pEA3 The development of affordable constant beamwidth transducers using injection molded 1-3 piezoelectric composite ... Kim C. Benjamin, A. L. Van Buren, and S. Petrie 1687
3pEA4 Lamb waves generation in composite plates with a thin linear array of piezoelectric elements ... Thierry Demol, Pierrick Blanquet, Emmanuel Moulin, and Christophe Delebarre 1689
3pEA5 Built-in transducer design for Lamb waves generation in composite structures Pierrick Blanquet, Thierry Demol, Emmanuel Moulin, and Christophe Delebarre 1691
3pEA6 Optimization of piezoelectric circular bimorph ... Andrzej B. Dobrucki 1693
3pEA7 Research on inhomogeneous 1-3 PZT/polymer composite transducer Xu Dalun and Zhou Tieying 1695
3pEA8 The ring type all fiber Fabry-Perot interferometer hydrophone system Donglin Li and Shuquan Zhang 1697

3pED UNDERGRADUATE RESEARCH POSTER SESSION

3pED1 Nonlinear effects in the paraxial region of diffracting sound beams radiated by cylinder sources ... Svetlana V. Babenkova, Vera A. Khokhlova, and Steven G. Kargl 1699
3pED2 Sentential prosodic contour facilitates adults’ short-term memory for nonsense syllable strings ... Diana Lynn Schenck 1701
3pED3 Design and development of PC-IMAT: Teaching strategies for acoustical oceanography .. Lee Anne Hurley, Kevin M. Thomas, Murray S. Korman, John W. Schuler, and Eleanor Holmes 1703
3pED4 Sonic gas analysis ... Matthew V. Golden, Robert M. Keolian, and Steven L. Garrett 1705
3pED5 Use of pseudo-random codes in pulse compression ... Paul Shoning, Antal Sarkady, and Currie Wooten 1707

3pPAa SONOCHEMISTRY AND SONOLUMINESCENCE: SC II

3pPAa1 Hydrodynamical perturbation effects in sonoluminescence Anatol M. Brodsky, Lloyd W. Burgess, David W. Kuhns, and Alex L. Robinson 1709
3pPAa2 Dependence of multibubble sonoluminescence intensity on the sound field in a sonochemical reactor .. Hideto Mitome, Teruyuki Kozuka, Toru Tuziuti, and Liming Wang 1711
3pPAa3 Ultrasound energy transferring into liquid phase load Oleg V. Abramov, Vladimir O. Abramov, Yuri S. Astashkin, Oleg M. Gradov, and Sergey I. Nikitenko 1713
3pPAa4 Enhancement of ultrasonic cavitation yield by a bifrequency irradiation and its frequency effect .. Ruo Feng, Changping Zhu, Jiangyi Xu, Zhouhua Chen, and Huamao Li 1715
3pPAa5 Ultrasonic waves in magnetic liquids: Two-phase approach and experimental results ... Tomasz Hornowski, Mariusz Kaczmarek, Mikolaj Labowski, and Andrzej Skumiel 1717
3pPAa6 Sonofluorescence image in analogous sonochemical reactor Huamao Li, Andong Xie, Fan Zhong, Huijun Wan, Lijin Liu, and Ruo Feng 1719
3pPAb NONLINEAR ACOUSTICS I: 1. HISTORY; 2. SOLIDS; ROCKS; 3. SURFACE WAVES, PART 2

3pPAb1 Interaction of counterpropagating acoustic waves in materials with nonlinear dissipation and in hysteretic media ... 1721
Vitalyi Gusev, Hélène Bailliet, Pierrick Lotton, and Michel Bruneau

3pPAb2 Pseudo-Rayleigh and pseudo-Scholte surface acoustic solitary waves ... 1723
Vitalyi Gusev, Christ Gorieux, and Jan Thoen

3pPAb3 Nonlinear acoustics of solids: History and modern trends ... 1725
Vladimir A. Krasilnikov

3pPAb4 Measurements of third-order elasticity in isotropic solids ... 1727
Z. W. Qian and Wenhua Jiang

3pPAb5 Nonlinear acoustics of zero-volume non-bonds and cracks ... 1729
Igor Yu. Solodov

3pPAc MEMORIAL SESSION FOR ISADORE RUDNICK

3pPAc0 Isadore Rudnick memorial session ... 1731
Richard Stern, Robert Keolian, and Steven Garrett

3pPAc1 Isadore Rudnick’s contributions to nonlinear acoustics ... 1733
Robert T. Beyer

3pPAc2 Izzy Rudnick’s educational demonstrations and videos ... 1735
Robert M. Keolian

3pPAc3 Metals, superconductors, phase transitions and Izzy ... 1737
Moises Levy

3pPAc4 Dr. Mudnick, rough-on-rats Rudnick, etc. ... 1739
Steven Garrett

3pPAc5 My happy years with my mentor—Professor Isadore Rudnick ... 1741
Junru Wu

3pPAc6 Isadore Rudnick: Making waves in superfluid helium ... 1743
J. D. Maynard

3pPAc7 Isadore Rudnick: Making waves in liquid helium ... 1745
Seth J. Putterman

3pSA NONLINEAR DYNAMICS AND CHAOS

3pSA1 Vector fields and quadratic maps ... 1747
Huw G. Davies and Konstantinos Karagiozis

3pSA2 Experimental and theoretical analysis of the nonlinear dynamics and acoustics of a rattling plate ... 1749
Karen Fegelman and Karl Grosh

3pSA3 Effects of disorder and nonlinearity on the propagation of classical waves ... 1751
O. Richoux, C. Depollier, J. Hardy, and A. Brezini

3pSA4 Nonlinear vibroacoustical free oscillation method for crack detection and evaluation ... 1753
Leonid M. Gelman and Sergey V. Gorpinich

3pSA5 Nonlinear dynamic behavior of a piezoelectric 1-3 composite ... 1755
Thomas J. Royston and Brian H. Houston

3pSA6 Theoretical bases of the vibroacoustical nonlinear forced oscillation diagnostics method ... 1757
Leonid M. Gelman and Nadejda I. Bouraou

3pSP GENERAL TOPICS IN SIGNAL PROCESSING IN ACOUSTICS

3pSP1 Using acoustic impulses to detect buried objects ... 1759
C. G. Don, D. E. Lawrence, and A. J. Rogers
3pSP2 Automatic noise source recognition .. 1761
Didier Dufournet, Philippe Jouenne, and Adam Rozwadowski

3pSP3 A novel octave graphic equalizer .. 1763
Marija F. Hribšek, Ruža Berberski, and Dejan V. Tošić

3pSP4 Tomographic scanning acoustic microscope system 1765
Daesik Ko, Daegun Song, Gihwan Hwang, and Kyesuk Jun

3pSP5 Motion compensated high frequency synthetic aperture sonar (SAS) 1767
James T. Christoff

3pSP6 A study of extracting characteristic parameters of tubular targets 1769
Renqian Wang and Yingchun Li

3pUW BOTTOM GEOACOUSTIC CHARACTERIZATION
AND INVERSION II

3pUW1 Head wave data inversion for geoacoustic parameters of the ocean bottom off
Vancouver Island ... 1771
Mark C. A. Laidlaw, Oleg A. Godin, and N. Ross Chapman

3pUW2 Acoustic propagation in gassy sediments 1773

3pUW3 Identification of inhomogeneous media using global optimization techniques 1775
Marcelo Bruno S. Magalhães and Roberto A. Tenenbaum

3pUW4 Sequential versus iterative methods for recovering acoustical impedance profiles of
inhomogeneous media .. 1777
Roberto A. Tenenbaum and Marcelo Bruno S. Magalhães

3pUW5 An experiment on inversion of sound profile through ray modeling 1779
Yuanliang Ma, Shixing Yang, Qingzuo Chen, Xiaoquuan Jiang, Qingping Tu, and Yuanhai Sheng

3pUW6 Waveguide characterization estimation in shallow water by a vertical array 1781
Dejun Jiang and Tianfu Gao

3pUW7 Error analysis of inverse algorithms for reconstructing the acoustic parameter
profile of layered media ... 1783
Jun-xuan Lin and Qing-hua Bao

4aPLa PLENARY LECTURE

4aPLa1 Fuzzier but simpler analytic models for physical acoustics and structural acoustics 1785
Allan D. Pierce

4aAA CASE STUDY ON THE NEW TOKYO PERFORMING
ARTS CENTER

4aAA1 Japan’s new National Performing Arts Center 1789
Takahiko Yanagisawa

4aAA2 Acoustical design of the opera house of the New National Theatre, Tokyo, Japan 1791
Leo L. Beranek, Takayuki Hidaka, and Sadahiro Masuda

4aAA3 Acoustical design of the drama and experimental theatres of the New National
Theatre, Tokyo, Japan .. 1793
Leo L. Beranek, Takayuki Hidaka, and Sadahiro Masuda

4aAA4 Acoustical design of the Tokyo Opera City (TOC) concert hall, Japan 1795
Takayuki Hidaka, Leo L. Beranek, Sadahiro Masuda, Noriko Nishihara,
and Toshiyuki Okano

4aAA5 Relation of acoustical parameters with and without audiences in concert halls
and a simple method for simulating the occupied state 1797
Takayuki Hidaka, Noriko Nishihara, and Leo L. Beranek

4aAA6 Objective and subjective measurement of fifteen opera houses in Europe, Japan
and Americas ... 1799
Takayuki Hidaka and Leo L. Beranek
4aAB TEMPORAL PATTERNS AND RHYTHM

4aAB1 It’s all a matter of timing: Temporal mechanisms for production and encoding of acoustic signals .. 1801
 Andrew H. Bass and Deana Bodnar
4aAB2 Temporal rhythms in the signals of insects ... 1803
 T. G. Forrest
4aAB3 Stochastic resonance in the amphibian auditory system? It’s just a matter of time 1805
 Peter M. Narins
4aAB4 Whale voices from the deep: Temporal patterns and signal structures as adaptations for living in an acoustic medium ... 1807
 Christopher W. Clark
4aAB5 Time pattern of sperm whale codas recorded in the Mediterranean sea 1985–1996 1809
 G. Pavan, T. Hayward, J. F. Borsani, M. Priano, M. Manghi, and C. Fossati

4aAO ACOUSTICS OF FISHERIES AND PLANKTON II

4aAO1 Acoustic scattering models of zooplankton from several major anatomical groups:
Theory and experiment .. 1811
 Timothy K. Stanton, Dezhang Chu, and Peter H. Wiebe
4aAO2 Covariance mean variance classification (CMVC) techniques: Application to the acoustic classification of zooplankton .. 1813
 Linda V. Martin Traykovski, Timothy K. Stanton, Peter H. Wiebe, and James F. Lynch
4aAO3 A DWBA-based representation of the extinction cross section of weakly scattering objects: Application to zooplankton .. 1815
 Dezhang Chu and Zhen Ye
4aAO4 An in situ target strength model for Atlantic redfish 1817
 Stéphane Gauthier and George Rose
4aAO5 Sensitivity of acoustic scattering models to fish morphometry 1819
 J. Michael Jech and John K. Horne
4aAO6 Quantifying intra-species variation in acoustic backscatter models 1821
 John K. Horne and J. Michael Jech
4aAO7 The acoustic scattering directivities of juvenile salmonids 1823
 Thomas J. Carlson, Mark A. Weiland, and Gina L. George
4aAO8 Target strength measurements of walleye pollock (Theragra chalcogramma) 1825
 Jimmie J. Traynor
4aAO9 Three-dimensional acoustic measurements of zooplankton swimming behavior in the Red Sea ... 1827
 Duncan E. McGehee, Amatzia Genin, and Jules S. Jaffe

4aBVa APPLICATIONS OF MICROBUBBLE BASED ECHO CONTRAST AGENTS I

4aBVa1 Characteristics of ultrasound contrast agents ... 1829
 Nico de Jong, Peter Frinking, and Ignacio Céspedes
4aBVa2 Nonlinear properties of microbubbles and applications to medical ultrasound imaging ... 1831
 Volkmar Uhlendorf, Thomas Fritzsch, Michael Reinhardt, and Frank-Detlef Scholle
4aBVa3 Harmonic imaging for microbubble contrast agent detection 1833
 Chien Ting Chin and Peter N. Burns
4aBVa4 Acoustic characterisation of Nycomed’s NC100100 contrast agent 1835
 Lars Hoff, Per C. Sontum, and Jens M. Hovem
4aBVa5 Nonlinear response of microbubbles to pulsed diagnostic ultrasound 1837
 Sascha Hilgenfeldt, Detlef Lohse, and Michael Zomack
<table>
<thead>
<tr>
<th>4aBVa6</th>
<th>Acoustical nonlinearity parameter of liquids with microbubbles</th>
<th>1839</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>4aBVa7</th>
<th>Bubble dynamics of ultrasound contrast agents</th>
<th>1841</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Michalakis A. Averkiou, Matthew F. Bruce, and Jeffry E. Powers</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aBVa8</th>
<th>Estimation of contrast agent concentration using spectrum analysis</th>
<th>1843</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cheri X. Deng, Frederic L. Lizzi, Andy Kalisz, Ronald H. Silverman, and D. Jackson Coleman</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aBVa9</th>
<th>Detection and estimation of micro-bubble size distribution in blood</th>
<th>1845</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Klaus V. Jenderka, Georg Dietrich, Ulrich Cobet, Bernhard Kopsch, Albrecht Klemenz, and Peter Urbanek</td>
<td></td>
</tr>
</tbody>
</table>

4aBVb MEDICAL ULTRASOUND I—TRANSDUCTION AND PROPAGATION

<table>
<thead>
<tr>
<th>4aBVb1</th>
<th>Ultrasonic phased array design for reduced crosstalk</th>
<th>1847</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>John M. Dodson and Karl Grosh</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aBVb2</th>
<th>A new method of ultrasonic hydrophone calibration using wave propagation modeling</th>
<th>1849</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hendrik J. Bleeker and Peter A. Lewin</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aBVb3</th>
<th>High frequency backscatter measurements of bovine tissues with unfocused and focused transducers</th>
<th>1851</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Subha Maruvada, Kirk Shung, and Shyh-Hau Wang</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aBVb4</th>
<th>The acoustic properties of microcalcifications in the context of breast ultrasound</th>
<th>1853</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Martin E. Anderson, Mary S. C. Soo, and Gregg E. Trahey</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aBVb5</th>
<th>Acousto-mechanical imaging for cancer detection</th>
<th>1855</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A. P. Sarvazyan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aBVb6</th>
<th>Shear wave excitation in rubber-like medium by focused shock pulse</th>
<th>1857</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yury A. Pishchal'nikov, Valery G. Andreev, Oleg V. Rudenko, Oleg A. SapoZHnikov, and Armen P. Sarvazyan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aBVb7</th>
<th>Evaluating ultrasound propagation through tissue layers mapped from medical images</th>
<th>1859</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jie Sun and Kullervo Hynynen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aBVb8</th>
<th>An A-mode ultrasound technique for tracking the advance of coagulation front in laser irradiated tissue</th>
<th>1861</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Zhigang Sun, Hao Ying, Jialiang Lu, Brent Bell, Massoud Motamedi, and Daniel F. Cowan</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aBVb9</th>
<th>Time domain propagation of pulsed ultrasound through a tissue-like material</th>
<th>1863</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ibrahim M. Hallaj, Robin O. Cleveland, Ronald A. Roy, and Steven G. Kargl</td>
<td></td>
</tr>
</tbody>
</table>

4aEA SENSORS FOR SMART SYSTEMS

<table>
<thead>
<tr>
<th>4aEA1</th>
<th>Sensor engineering on the microscale</th>
<th>1865</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thomas B. Gabrielson</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aEA2</th>
<th>Area averaging sensors for vibro-acoustic control</th>
<th>1867</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Brian Houston and Robert D. Corsaro</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aEA3</th>
<th>Sound power emission measurement and control on a 300 t hydraulic press</th>
<th>1869</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fabrizio Bronuzzi, Caterina Cigna, Mario Patrucco, and Maurizio Sassone</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aEA4</th>
<th>Active control of sound transmission through an industrial sound encapsulation</th>
<th>1871</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Paul Sas, Wouter Dehandschutter, Antonio Vecchio, and Rene Boonen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aEA5</th>
<th>Structural vibration mode imaging using photorefractive holography</th>
<th>1873</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K. L. Telschow and V. A. Deason</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aEA6</th>
<th>Piezoelectric resonant sensor for sound velocity of liquids</th>
<th>1875</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ewald Benes, Helmut Nowotny, Branka Devcic-Kuhar, Martin Gröschl, Dagmar Harrer, Rudolf Thalhammer, and Felix Trampler</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4aEA7</th>
<th>Transient behaviour of acoustic gyrometers</th>
<th>1877</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Philippa Dupire and Michel Bruneau</td>
<td></td>
</tr>
</tbody>
</table>
4aMU TIMBRE OF MUSICAL SOUND I

4aMU1 Spectral vs. harmonic information for timbre: Pilot and experimental results 1879
 Einar W. Mencl

4aMU2 Macrotimbre: Contribution of attack and steady state .. 1881
 Gregory J. Sandell

4aMU3 Methods for measurement and manipulation of timbral physical correlates 1883
 James W. Beauchamp

4aMU4 Perceptual interaction of excitor and resonator properties in percussive instrument sounds ... 1885
 Stephen McAdams, Koei Kudo, and Holle Kirchner

4aMU5 The effect of amplitude and centroid trajectories on the timbre of percussive and nonpercussive orchestral instruments 1887
 John M. Hajda

4aMU6 Computer identification of wind instruments using cepstral coefficients 1889
 Judith C. Brown

4aNS ACOUSTICAL MATERIALS AND PROPAGATION

4aNS1 Effect of the flat panel resonance on the absorption characteristics of microperforated-panel absorber .. 1891
 Liu Ke, Jiao Fenglei, Ding Hui, and Qiao Wuzhi

4aNS2 Prediction system for rotor-stator interaction noise generation, propagation and optimization of acoustic liners .. 1893
 Yadong Lu, Zongan Hu, and Tsui Chihya

4aNS3 The Wiener-Hopf technique and scattering of acoustic waves in ducts 1895
 Fredrik Albertson

4aNS4 Acoustic response of a thin poroelastic plate .. 1897
 Kirill V. Horoshenkov and Kimihiro Sakagami

4aNS5 A non-destructive method to measure the airflow resistance of jet engine nacelles .. 1899
 T. R. T. Nightingale and Brandon Tinianow

4aNS6 Another predication method of sound power levels of noise sources—Vibration measurement method .. 1901
 Yang Weicheng, Liao Wenbin, Qiao Wuzhi, and Jiao Fenglei

4aNS7 The limit of absorbing characteristics of folded resonators silencers and ways on its realisation ... 1903
 Roudolf N. Starobinski

4aPAa CAVITATION DYNAMICS: IN MEMORIAM HUGH FLYNN I

4aPAa1 Hugh Guthrie Flynn, 1912–1997 ... 1905
 David T. Blackstock

4aPAa2 Sonically induced growth of gas bubbles by diffusion 1907
 Anthony I. Eller

4aPAa3 Reminiscences on bubble dynamics and cavitation .. 1909
 M. Strasberg

4aPAa4 “Physics of acoustic cavitation in liquids”: Flynn’s review 35 years later 1911
 A. Prosperetti

4aPAa5 Cavitation terminology .. 1913
 Wesley L. Nyborg

4aPAa6 Influence of non-radial experimental conditions on the acoustic scattering behaviour of a single cavitation bubble 1915
 T. Niederdränk

4aPAa7 Susceptibility of silicon wafers to acoustic microcavitation damage 1917
 Sameer I. Madanshetty and Jogesh B. Chandran
4PAa8 Study of the correlations between cavitation noise power and void rate in an acoustic cavitation bubble field ... 1919
Stéphane Labouret, Jacques Frohly, Roger Torguet, and Liévin Camus

4PAb RADIATION AND DIFFRACTION

4PAb1 Acoastical helicoidal waves and Laguerre-Gaussian beams: Applications to scattering and to angular momentum transport .. 1921
Brian T. Hefner and Philip L. Marston

4PAb2 Vibrations of a film with arrays of point masses ... 1923
Takato Handa, Andy Piacsek, and Roger Yu

4PAb3 Absorbing boundary conditions for acoustic waves and Huygens principle 1925
Gérard Mangiante and Sylvestre Charles

4PAb4 Diffraction by a hard half plane: Useful and simple frequency forms to an exact time-domain solution ... 1927
Djamel Ouis

4PAb5 A discussion on non-radiating sources ... 1929
Ricardo E. Musafir

4PAb6 Lending an ear to the dimensionality of the space .. 1931
R. Nicol, J. Hardy, and C. Depollier

4PAb7 Resolution of the convected Helmholtz’s equation by integral equations 1933
M. Beldi

4PAb8 Enhanced ray theory .. 1935
Nikolay E. Maltsev

4PAb9 Experimental study on the vortex-shedding sound from a yawed circular cylinder 1937
Jong-Soo Choi and Hoon-Bin Hong

4PAc GENERAL TOPICS IN PHYSICAL ACOUSTICS

4PAc1 Theory on mass-transport generated by ultrasonic Lamb-waves 1939
Gonghuan Du, Zhemin Zhu, and Xiaoliang Zhao

4PAc2 Photoacoustic study of the electron-hole transport in a piezoelectric semiconductor 1941
Weimin Gao, Vitaly Gusev, Christ Glorieux, Kris Van de Rostyne, Jan Thoen, and Gustaaf Borghs

4PAc3 Ultrasonic investigation of glass transition dynamics of polyurethane systems 1943
Pierre-Yves Bailiff, Mohamed Tabellout, and Jacques R. Emery

4PAc4 Longitudinal structural relaxation of a glass-forming epoxy oligomer 1945
Mami Matsukawa, Hiroshi Yamura, Takahiko Otani, and Norikazu Ohnori

4PAc5 Hot-spot model of single-bubble sonoluminescence 1947
Kyuichi Yasui

4PAc6 Nonlinear reflection of acoustic waves at the dissipative isotropic solid-solid interfaces ... 1949
W. H. Jiang, J. J. Chen, and Y. A. Shui

4PAc7 Estimation of forward propagated ultrasonic fields in layered fluid media 1951
Kang L. Ha, Moo J. Kim, Wei Y. Zhang, Shi G. Ye, and Xiu F. Gong

4PAc8 High temporal resolution of the acoustic transients associated with optical cavitation in water using a large area piezoelectric transducer 1953
Robin D. Alcock and David C. Emmony

4PAc9 Particle interactions in coupled phase theory for sound propagation in concentrated emulsions ... 1955
J. M. Evans and K. Attenborough

4PAc10 Particle trajectories in a drifting resonance field separation device 1957
Bernhard Handl, Martin Gröschl, Felix Trampler, Ewald Benes, Steven M. Woodside, and James M. Piret

4PAc11 Methods of processing laser Doppler anemometry signals to extract sound field information ... 1959
John S. Cullen, David B. Hann, Clive A. Greated, and D. Murray Campbell
<table>
<thead>
<tr>
<th>4aPAC12</th>
<th>Approach to characterize the sound field of pulse-excited ultrasonic sensors using a laser-Doppler vibrometer</th>
<th>1961</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bernd Henning, Stefan Prange, Mark Schuart, and Karsten Dierks</td>
<td></td>
</tr>
<tr>
<td>4aPAC13</td>
<td>Simulation of ultrasound propagation in a thermally turbulent fluid using Gaussian beam summation and Fourier modes superposition techniques</td>
<td>1963</td>
</tr>
<tr>
<td></td>
<td>Christian Lhullier, David Fiorina, and Daniel Juvé</td>
<td></td>
</tr>
<tr>
<td>4aPAC14</td>
<td>Lattice Boltzmann methods in acoustics</td>
<td>1965</td>
</tr>
<tr>
<td></td>
<td>James M. Buick, D. Murray Campbell, and Clive A. Greated</td>
<td></td>
</tr>
<tr>
<td>4aPAC15</td>
<td>Acoustical characteristics of the noise radiated from supersonic multi-jets</td>
<td>1967</td>
</tr>
<tr>
<td></td>
<td>Yoshikuni Umeda and Ryuji Ishii</td>
<td></td>
</tr>
<tr>
<td>4aPAC16</td>
<td>Acoustic parameters of high functional plastics—Measurement of acoustic velocities (wave propagation velocities)</td>
<td>1969</td>
</tr>
<tr>
<td></td>
<td>Masahide Gakumazawa and Minoru Akiyama</td>
<td></td>
</tr>
</tbody>
</table>

4aPP PLENARY PREVIEW—ISSUES RELATED TO SPEECH PERCEPTION AND HEARING IMPAIRMENT

<table>
<thead>
<tr>
<th>4aPP1</th>
<th>Effects of stimulus level and background noise on vowel representations in the auditory brainstem of cats</th>
<th>1971</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bradford J. May and Murray B. Sachs</td>
<td></td>
</tr>
<tr>
<td>4aPP2</td>
<td>The role of the auditory periphery in the categorization of stop consonants</td>
<td>1973</td>
</tr>
<tr>
<td></td>
<td>R. I. Damper</td>
<td></td>
</tr>
<tr>
<td>4aPP3</td>
<td>Integrating monaural and binaural spectral information</td>
<td>1975</td>
</tr>
<tr>
<td></td>
<td>Michael A. Akeroyd, A. Quentin Summerfield, and John R. Foster</td>
<td></td>
</tr>
<tr>
<td>4aPP4</td>
<td>Gap detection threshold in ears with and without spontaneous otoacoustic emissions</td>
<td>1977</td>
</tr>
<tr>
<td></td>
<td>Jacek Smurzynski and Rudolf Probst</td>
<td></td>
</tr>
<tr>
<td>4aPP5</td>
<td>Modulation masking in a speech recognition task for hearing impaired subjects</td>
<td>1979</td>
</tr>
<tr>
<td></td>
<td>René van der Horst and Wouter A. Dreschler</td>
<td></td>
</tr>
<tr>
<td>4aPP6</td>
<td>A mathematical model of consonant perception by cochlear implant users with the SPEAK strategy</td>
<td>1981</td>
</tr>
<tr>
<td></td>
<td>Mario A. Svirsky and Ted A. Meyer</td>
<td></td>
</tr>
<tr>
<td>4aPP7</td>
<td>Categorical loudness perception in normal and hearing impaired subjects</td>
<td>1983</td>
</tr>
<tr>
<td></td>
<td>Vishakha Waman Rawool</td>
<td></td>
</tr>
<tr>
<td>4aPP8</td>
<td>Across-channel sensitivity to temporal asynchrony in cochlear implantees</td>
<td>1985</td>
</tr>
<tr>
<td></td>
<td>R. P. Carlyon, L. Geurts, and J. Wouters</td>
<td></td>
</tr>
<tr>
<td>4aPP9</td>
<td>The effect of fast-acting compression on psychoacoustic jnds</td>
<td>1987</td>
</tr>
<tr>
<td></td>
<td>Brent W. Edwards</td>
<td></td>
</tr>
<tr>
<td>4aPP10</td>
<td>Spectro-temporal modulation transfer and speech intelligibility for multi-band amplitude compression</td>
<td>1989</td>
</tr>
<tr>
<td></td>
<td>Joost M. Festen</td>
<td></td>
</tr>
</tbody>
</table>

4aSA STATISTICAL ENERGY AND FUZZY STRUCTURE ANALYSES—SIMILARITIES AND DIFFERENCES

<table>
<thead>
<tr>
<th>4aSA1</th>
<th>Structures with attached resonators—The SEA view</th>
<th>1991</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Richard H. Lyon</td>
<td></td>
</tr>
<tr>
<td>4aSA2</td>
<td>Rudimentary statistical energy analysis and structural fuzzies</td>
<td>1993</td>
</tr>
<tr>
<td></td>
<td>Gideon Maidanik and J. Dickey</td>
<td></td>
</tr>
<tr>
<td>4aSA3</td>
<td>Spatial distribution of energy in SEA acoustic volumes</td>
<td>1995</td>
</tr>
<tr>
<td></td>
<td>Evan B. Davis</td>
<td></td>
</tr>
<tr>
<td>4aSA4</td>
<td>Fuzzy structure, initial problem, Poincaré theorem</td>
<td>1997</td>
</tr>
<tr>
<td></td>
<td>S. A. Rybak</td>
<td></td>
</tr>
</tbody>
</table>
4aSC SPEECH PERCEPTION THEORIES AND MODELS

4aSC1 Testing two information taxonomies in Spanish 1999
Guillermo Andrés Toledo

4aSC2 Perception of speech gestures .. 2001
René Carré and Pierre L. Divenyi

4aSC3 Coarticulation in CV syllables: A locus equation and EPG perspective 2003
Marija Tabain

4aSC4 A model for dependencies in phonetic categorization 2005
Roel Smits

4aSC5 Familiarity and pronounceability of nouns and names: The Purdue proper name database ... 2007
Aimée M. Surprenant, Susan L. Hura, Mary P. Harper, Leah H. Jamieson, Glenis Long,
Scott M. Thede, Ayasakanta Rout, Tsung-Hsiang Hsueh, Stephen A. Hockema,
Michael T. Johnson, John B. Laflan, Pramila Srinivasan, and Christopher White

4aSC6 Ranking the pitches of concurrent vowels .. 2009
D. Dwayne Paschall and Peter F. Assmann

4aSC7 Selection of a tonotopic scale for vowels .. 2011
Terrance M. Nearey

4aSC8 An exemplar-based account of emergent phonetic categories 2013
Francisco Lacerda

4aSC9 Effect of spectral distance on vowel perception 2015
Patrick C. M. Wong and Randy L. Diehl

4aSC10 Syllable as the segmentation unit in perceiving spoken Chinese 2017
Chin-Hsing Tseng

4aSC11 Phonological boundaries and the spectral center of gravity 2019
Michelle R. Molis, Randy L. Diehl, and Adam Jacks

4aSC12 An exemplar-based model of silent-center syllable perception 2021
Stephen Winters and Keith Johnson

4aSC13 The time course of auditory learning: Neurophysiologic changes during speech-sound training ... 2023
Kelly L. Tremblay, Nina Kraus, Therese McGee, and Steve Zecker

4aSC14 Context effects in the auditory identification of Spanish fricatives /f/ and /θ/: Hyper and hypoespace ... 2025
Sergio Feijóo, Santiago Fernández, and Ramón Balsa

4aSC15 Evidence of independent verbal processors for the same stimulus: Insights from dichotic verbal transformations .. 2027
James A. Bashford, Jr. and Richard M. Warren

4aSC16 Inducing a “perceptual magnet”-like effect in a non-speech modality 2029
Fatima T. Hussain and Frank H. Guenther

4aSC17 Interarticulator phasing and locus equations 2031
Anders Löfqvist

4aSC18 Latency of MEG M100 response indexes first formant frequency 2033
Krishna K. Govindarajan, Colin Phillips, David Poeppel, Timothy P. L. Roberts, and Alec Marantz

4aSC19 Perceptual magnet effect in the corner vowels /u/ and /a/ 2035
Robert Allen Fox and Lynn Carahaly

4aSC20 Surveying auditory space using vowel formant data 2037
Matthew J. Makashay and Keith Johnson

4aSC21 Relation between discrimination and identification of English vowels 2039
Diane Kewley-Port and Amy T. Neel

4aSC22 Effects of vowel prototypicality and extremity on discrimination sensitivity ... 2041
Satsuki Nakai

4aSC23 Phonetic categories: Internal category structure and processing speed 2043
Joanne L. Miller, Peter D. Eimas, and Ethan Cox

4aSC24 The effect of speaking style alterations on locus equation stability 2045
Harvey M. Sussman, Eileen Dalston, and Sam Gumbert
4aSC25 Modeling the perception of features in the identification of English consonants 2047
 Tobey Lynn Doeleman
4aSC26 Additive effects of phonetic distinctions in word learning 2049
 Joseph Pater, Christine Stager, and Janet Werker
4aSC27 Vowel perception by children and adults: Based on steady-states or transitions? 2051
 Joan E. Sussman, Jason Steinberg, and Julie Fenwick
4aSC28 Lexical competition in spoken word recognition by younger and older adults:
 A comparison of the rime cognate, neighborhood, and cohort 2053
 Mitchell S. Sommers and Shigeaki Amano
4aSC29 Integration of auditory and visual speech information 2055
 Michael D. Hall, Paula M. T. Smeeele, and Patricia K. Kuhl
4aSC30 Speech-sound perception in normal and learning-disabled children: Effect of
 lengthened CV transition duration ... 2057
 Ann R. Bradlow, Nina Kraus, Trent Nicol, Therese McGee, Jenna Cunningham,
 and Thomas D. Carrell
4aSC31 Listener variability and multiple perception processes 2059
 Stephanie Lindemann
4aSC32 Effects of affective tone on spoken word recognition ... 2061
 Lynne C. Nygaard, Jennifer S. Queen, and S. Alexandra Burt
4aSC33 On the perception of qualitative and phonetic similarities of voices 2063
 Robert E. Remez, Jennifer L. Van Dyk, Jennifer M. Fellowes, and Philip E. Rubin
4aSC34 Perception of American English /r/ and /l/ by Mandarin speakers: Influences of
 phonetic identification and category goodness ... 2065
 Feng-Ming Tsao, Michael D. Hall, Richard Eyraud, and Patricia K. Kuhl
4aSC35 Non-native listeners’ representations of within-word structure 2067
 Takashi Otake, Kiyoko Yoneyama, and Hideki Maki
4aSC36 The discovery of natural classes by non-native listeners 2069
 John Kingston and Elliott Moreton

4aSP ACOUSTICS IN MULTIMEDIA—SYSTEMS ISSUES I

4aSP1 The JASA and other technical journals of the future—A new multimedia format? 2071
 Daniel R. Raichel
4aSP2 Mediacoastics: The teaching of acoustics by computer .. 2073
 Michael Wahlrab
4aSP3 Animations created in Mathematica for acoustics education 2075
 Victor W. Sparrow and Daniel A. Russell
4aSP4 A software teacher for acoustical measurements .. 2077
 Ila Tokola, Matti Karjalainen, and Martti Rahkila
4aSP5 Design and development of the personalized curriculum for interactive multisensor
 analysis training (PC-IMAT) ... 2079
 John W. Schuler, Murray S. Korman, and Eleanor Holmes
4aSP6 Construction of a HATS and its HRTF measurement for 3-D sound 2081
 Kyeong Ok Kang, Dong-Gyu Kang, Minsoo Hahn, Moon Jae Jho, and Dae-Gwon Jeong
4aSP7 Measuring and modeling the effect of source distance in head-related transfer
 functions ... 2083
 Jyri Huopaniemi and Klaus A. J. Riederer

4aUW 3-D PROPAGATION EFFECTS I: WHERE ARE WE TODAY
 IN MODELS AND MEASUREMENTS?

4aUW1 The penetrable wedge as a three dimensional benchmark 2085
 Grant B. Deane
4aUW2 Three-dimensional propagation effects: Modeling, observations, suggested
 benchmark cases ... 2087
 Kevin B. Smith
4aUW3 Experimental measurements of three dimensional underwater sound propagation over a variable bathymetry ... 2089
Stewart A. L. Glegg, Joseph M. Riley, and Antony La Vigne

4aUW4 Modeling of the Santa Lucia experiment .. 2091
Michael B. Porter

4aUW5 Benchmarking two three-dimensional parabolic equation methods 2093
Frédéric B. Sturm, John A. Fawcett, Finn B. Jensen, and Marie-Claude Péliissier

4aUW6 Parabolic equation modeling with the split-step Fourier algorithm in four dimensions .. 2095
Frederick D. Tappert

4aUW7 Parabolic equation techniques for scattering from an object in a waveguide 2097
Michael D. Collins, Luise S. Couchman, Joseph F. Lingevitch, Joseph J. Shirron,
Mireille F. Levy, and Andrew A. Zaporozhets

4aUW8 Limitations on adiabatic normal modes in range varying environments 2099
Peter C. Mignerey

4aUW9 3-D acoustic effects due to ocean currents ... 2101
Oleg A. Godin

4aUW10 Three-dimensional solutions to range-dependent problems in shallow-water by a pseudo-spectral method .. 2103
Altan Turgut and Stephen N. Wolf

4aPlb PLENARY LECTURE

4aPlb1 Psychoacoustics of cochlear hearing impairment and the design of hearing aids 2105
Brian C. J. Moore

4pAAb PERFORMANCE SPACES

4pAAb1 Early sound distribution in auditorium .. 2117
Jiqing Wang and Guorong Jiang

4pAAb2 The late reverberation time as a new criteria for the evaluation of hall acoustics 2119
Vytautas J. Stauskis

4pAAb3 Study on acoustic index variations due to small changes in an observation point 2121
Katsuaki Sekiguchi and Toshiki Hanyu

4pAAb4 Effects of the spatial information of a sound field on listener envelopment 2123
Toshiki Hanyu and Sho Kimura

4pAAb5 An evaluation method of concert hall acoustics 2125
Y. Hirasawa and Z. Maekawa

4pAAb6 Acoustical behavior of churches: Mudejar-Gothic churches 2127
Juan J. Sendra, T. Zamarréno, and J. Navarro

4pAAb7 Acoustical design of the Sumida Triphony Hall .. 2129
Toshiko Fukuchi and Hideo Nakamura
4pAAb8 Subjective assessment of uneven distribution of reflections within a concert hall
Eugenio Collados

4pAAb9 A neural network analysis of concert hall acoustics
Fergus R. Fricke and Young Gon Han

4pAAb10 Directional dependence of the change of auditory source width by very short time-delay reflections
Masayuki Morimoto and Mariko Watanabe

4pAAb11 Reverberation time in Serbian orthodox worship spaces
Miomir Mijic

4pAAb12 An experiment to identify preference groups among concert hall listeners
M. Miklin Halstead, Johan L. Nielsen, and A. Harold Marshall

4pAAb13 On spatial variability of room acoustics measures
Johan L. Nielsen, M. Miklin Halstead, and A. Harold Marshall

4pAAb14 Acoustical design of Queensland Conservatorium of Music
Keiji Oguchi, Yasuhiro Toyota, and Minoru Nagata

4pAAb15 Estimation and analysis of acoustic parameters of ancient churches for concert performances
Tiziana Ottonello, Enrico Dassori, and Andrea Trucco

4pAAb16 Acoustic behavior of a tense-structure
Alessandro Cocchi and Lamberto Tronchin

4pAAb17 Effects of surface textures of choral reflectors
Elizabeth J. Lee

4pAAb18 Acoustical design and characteristics of Harmony Hall Fukui
Akira Ono, Suzuyo Yokose, and Katsuj Naniwa

4pAAb19 Effects of the modulated delay-time of the single reflection on subjective preference
Junko Atagi, Yoichi Ando, and Yasutaka Ueda

4pAAb20 Individual differences of subjective preference for sound fields with different preferred delay time of reflection
Souichiro Kuroki, Ippei Yamamoto, Hiroki Sakai, Hiroshi Setoguchi, and Yoichi Ando

4pAAC SPEECH INTELLIGIBILITY

4pAAC1 Modelling of acoustic parameters and speech intelligibility in long enclosures
Bridget M. Shield and Lening Yang

4pAAC2 Relationship between speech transmission index and easiness of speech perception in reverberation
Hiroshi Sato, Hiroshi Yoshino, and Muneshige Nagatomo

4pAAC3 Investigation of the speech intelligibility in the dome space
Satoshi Inoue, Masahiro Kato, Kiyoshi Sugino, and Hiroyuki Imaizumi

4pAAC4 Calculation of speech intelligibility using four orthogonal factors extracted from the autocorrelation functions of source and sound field signals
Tetsuichi Shoda and Yoichi Ando

4pAO ACOUSTICS OF FISHERIES AND PLANKTON III

4pAO1 Variation in acoustically measured abundance from repeated surveys of herring
Marek Ostrowski and Ingvar J. Huse

4pAO2 Acoustic estimates of zooplankton and micronekton biomass using an ADCP
Patrick H. Ressler, D. C. Biggs, and J. H. Wormuth

4pAO3 Monitoring the growth and mortality rates of pelagic fish with absorption spectroscopy measurements
Orest Diachok and Paul Smith

4pAO4 Measurements of snapping shrimp colonies using a wideband mobile passive sonar
Marc P. Olivieri and Stewart A. L. Glegg
Using sound to map fish spawning: Determining the seasonality and location of spawning by fishes in the family *Sciaenidae* (Seatrouts, Drums, and Croakers) within Pamlico Sound, NC
Joseph J. Luczkovich, Stephen E. Johnson, and Mark Sprague

Using fish sounds to identify spawning activity of weakfish (*Cynoscion regalis*) and red drum (*Sciaenops ocellata*) in nature
Mark W. Sprague, Joe J. Luczkovich, and Stephen Johnson

4pBV APPLICATIONS OF MICROBUBBLE BASED ECHO CONTRAST AGENTS II

<table>
<thead>
<tr>
<th>4pBV1</th>
<th>Quantification of myocardial blood flow using microbubbles</th>
<th>2177</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sanjiv Kaul, Kevin Wei, and Ananda R. Jayaweera</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pBV2</th>
<th>Gas-filled liposomes as ultrasound contrast agents for blood pool, thrombus-specific and therapeutic applications</th>
<th>2179</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Evan C. Unger, Thomas P. McCrerey, DeKang Shen, GuanLi Wu, Robert H. Sweiitzer, and Qiu Wu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pBV3</th>
<th>Targeted acoustic contrast agents—New opportunities for ultrasound in medical diagnosis and therapy</th>
<th>2181</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gregory M. Lanza, Kirk D. Wallace, Rebecca L. Trousil, James G. Miller, James H. Rose, Patrick J. Gaffney, Dana R. Abendschein, Christopher S. Hall, Michael J. Scott, Christine A. Lorenz, Ralph Fuhrhop, and Samuel A. Wickline</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pBV4</th>
<th>Disruption of contrast agents for monitoring blood flow</th>
<th>2183</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Richard T. Rhee, J. Brian Fowlkes, David W. Sirkin, Jonathan M. Rubin, and Paul L. Carson</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pBV5</th>
<th>Effects of transmitted phase on echoes from ultrasound contrast agents</th>
<th>2185</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>K. E. Morgan, P. A. Dayton, A. L. Klibanov, G. H. Brandenburger, and K. W. Ferrara</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pBV6</th>
<th>Characterization of ultrasound-contrast-agents by short-burst excitation</th>
<th>2187</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Oliver D. Kripfgans, J. Brian Fowlkes, and Paul L. Carson</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pBV7</th>
<th>Acoustic detection of microbubble destruction in gaseous contrast agents</th>
<th>2189</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>William T. Shi, Flemming Forsberg, and E. Carr Everbach</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pBV8</th>
<th>Acoustic and system parameters affecting destruction of ultrasound contrast agents</th>
<th>2191</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peter P. Chang, Inder Raj S. Makin, and Lawrence A. Crum</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pBV9</th>
<th>Observations of insonified contrast agents in-vitro and in-vivo</th>
<th>2193</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P. Dayton, K. Morgan, M. Allietta, A. Klibanov, G. Brandenburger, and K. Ferrara</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pBV10</th>
<th>Ultrasound contrast agent enhances vascular damage in mouse intestine</th>
<th>2195</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Richard A. Gies and Douglas L. Miller</td>
<td></td>
</tr>
</tbody>
</table>

4pEA APPLICATIONS OF ACOUSTIC TECHNOLOGY

<table>
<thead>
<tr>
<th>4pEA1</th>
<th>Determination of the noise attenuation of hearing protectors by numerical modeling of the outer ear</th>
<th>2197</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Samir N. Y. Gerges, Elizabete Y. N. Bavastri, and Mario Triches, Jr.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pEA2</th>
<th>Improved TV/radio listening for hearing impaired</th>
<th>2199</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>J. G. H. van Zutphen, W. F. Druyvesteyn, and C. H. Slump</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pEA3</th>
<th>Piezoelectric transducer for hearing aid using PZT thin film</th>
<th>2201</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hidehiko Yasui, Minoru Kurosawa, Takeshi Morita, Takefumi Kanda, and Toshiro Higuchi</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pEA4</th>
<th>Low frequency circuit noise in hearing aids</th>
<th>2203</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vishakha Waman Rawool</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pEA5</th>
<th>High degree of freedom muffler optimisation using genetic algorithms: Experimental verification</th>
<th>2205</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Pottie and D. Botteldooren</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4pEA6</th>
<th>Theoretical analysis of reactive silencers with two propagating modes</th>
<th>2207</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jean Kergomard and Marc Pachebat</td>
<td></td>
</tr>
</tbody>
</table>
4pEA7 Observations of characteristic transmission and reflection coefficients of a splitter duct attenuator ... 2209
Michihito Terao and Hidehisa Sekine

4pEA8 Applications of the sonic soot cleaning techniques in boilers 2211
Tian Jing

4pMU TIMBRE OF MUSICAL SOUND II

4pMU1 Validation of a multidimensional distance model for perceptual dissimilarities among musical timbres ... 2213
Nicolas Misdariis, Bennett K. Smith, Daniel Pressnitzer, Patrick Susini, and Stephen McAdams

4pMU2 Timbre effects caused by drumstick tip shapes/sizes .. 2215
James H. Irwin, Jr.

4pMU3 On the intentional use of instrument characteristics in contemporary classical compositions ... 2217
Alexandra Hettergott

4pMU4 Musical instrument perception in cochlear implant listeners 2219
John J. Galvin, III and Fan-Gang Zeng

4pMU5 Signal processing analyses of the effects of guitar geometry on musical timbre 2221
Suzanne Keilson, Dominic DiDomenico, and Kevin Morris

4pMU6 The subjective assessment of resonating sound-art samples and its relation to psychoacoustic measures ... 2223
Densil A. Cabrera

4pMU7 The dependence of timbre perception on the acoustics of the listening environment 2225
Daeup Jeong and Fergus R. Fricke

4pMU8 Perceptual analysis of vibrating bars synthesized with a physical model 2227
Vincent Roussarie, Stephen McAdams, and Antoine Chaigne

VOLUME IV

4pNSa SURFACE TRANSPORTATION NOISE: TRAINS AND AUTOMOBILES

4pNSa1 Diagnosis of noise sources on high-speed trains using the microphone-array technique ... 2229
B. Barsikow and M. Klemenz

4pNSa2 Noise prediction and control for a Norwegian high speed railway 2231
Matias Ringheim

4pNSa3 Ground-borne vibration measurements of high-speed trains 2233
David A. Towers and Hugh J. Saurenman

4pNSa4 New noise impact criteria for high speed ground transportation systems in the United States .. 2235
Carl E. Hanson

4pNSa5 Wayside noise measurements of high-speed trains ... 2237
David A. Towers

4pNSa6 Identification of moving acoustic sources from pass-by noise 2239
Byoung-Duk Lim and Deok-ki Kim

4pNSa7 The acoustic impact of local railways lines .. 2241
Cristina Pronello

4pNSa8 Limits to the noise limits? .. 2243
Tor Kihlman and Wolfgang Kropp

4pNSa9 Effects of traffic noise within the Madrid region .. 2245
M. Recuero, C. Gil, and J. Grundman

4pNSa10 Measuring traffic noise in Valencia ... 2247
Antonio Reig, José L. Manglano, Esteban Gaja, and Salvador Sancho
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4pNSa11</td>
<td>Characterization of vehicle noise in Hong Kong</td>
<td>W. T. Ng, M. M. F. Yuen, and W. M. To</td>
<td>2249</td>
</tr>
<tr>
<td>4pNSa12</td>
<td>Multivariate analysis of road traffic noise Gandia (Spain) during 24 hours and its evolution in the last decades</td>
<td>José Romero, Alicia Jimenez, Antonio Sanchis, Albert Marin, and Grover Zuita</td>
<td>2251</td>
</tr>
<tr>
<td>4pNSa13</td>
<td>Criteria and control for environmental noise emitted from motor vehicles</td>
<td>Ren Wentang</td>
<td>2253</td>
</tr>
<tr>
<td>4pNSa14</td>
<td>A mathematical model for the evaluation and prediction of the mean energy level of traffic noise in Caracas</td>
<td>Nila Montbrun, Victor Rastelli, Alexis Buozza, Jenny Montbrun Di Filippo, and Yamilte Sanchez</td>
<td>2255</td>
</tr>
</tbody>
</table>

4pNSb ACTIVE NOISE AND VIBRATION CONTROL

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4pNSb1</td>
<td>Active local noise control in open space</td>
<td>Jingnan Guo and Jie Pan</td>
<td>2257</td>
</tr>
<tr>
<td>4pNSb2</td>
<td>Adaptive control of sound transmission with neural network algorithms</td>
<td>Tian Jing, Lin Hai, and Cheng Mingkun</td>
<td>2259</td>
</tr>
<tr>
<td>4pNSb3</td>
<td>Real-time wave separation in a cylindrical pipe with applications to reflectometry, echo-cancellation, and a hybrid musical instrument</td>
<td>Jean Guérard and Xavier Boutillon</td>
<td>2261</td>
</tr>
<tr>
<td>4pNSb4</td>
<td>Active noise control of a single engine light aircraft cabin</td>
<td>Colin Kestell, Ben Cazzolato, and Colin Hansen</td>
<td>2263</td>
</tr>
<tr>
<td>4pNSb5</td>
<td>A hybrid active/passive system for control of diesel locomotive exhaust noise</td>
<td>Paul J. Remington, Scott Knight, and Douglas Hanna</td>
<td>2265</td>
</tr>
<tr>
<td>4pNSb6</td>
<td>Anticipated effectiveness of active noise control in propeller aircraft interiors as determined by sound quality tests</td>
<td>Clemans A. Powell and Brenda M. Sullivan</td>
<td>2267</td>
</tr>
<tr>
<td>4pNSb7</td>
<td>Robust feedback active noise control algorithm for impulsive additive noise</td>
<td>Sang-Wook Lee and Koeng-Mo Sung</td>
<td>2269</td>
</tr>
<tr>
<td>4pNSb8</td>
<td>Active control of structural sound using active constrained layer damping treatment</td>
<td>Jun Yang, Jing Tian, and Xiaodong Li</td>
<td>2271</td>
</tr>
<tr>
<td>4pNSb9</td>
<td>Active noise barrier efficiency improvement using multirate signal processing</td>
<td>Jelena Certic, Slobodan Kovacevic, and Petar Pravica</td>
<td>2273</td>
</tr>
</tbody>
</table>

4pPAa CAVITATION DYNAMICS: IN MEMORIAM HUGH FLYNN II

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4pPAa1</td>
<td>Acoustically induced cavitation fusion</td>
<td>Lawrence A. Crum</td>
<td>2275</td>
</tr>
<tr>
<td>4pPAa2</td>
<td>The search for cavitation in vivo</td>
<td>Edwin L. Carstensen, Sheryl Gracewski, and Diane Dalecki</td>
<td>2277</td>
</tr>
<tr>
<td>4pPAa3</td>
<td>Nonlinear dynamics of bubbles with surfactants</td>
<td>Robert E. Apfel, Xiaohui Chen, and Jeffrey Ketterling</td>
<td>2279</td>
</tr>
<tr>
<td>4pPAa4</td>
<td>Response curves of bubbles</td>
<td>Werner H. Lauterborn and Robert Mettin</td>
<td>2281</td>
</tr>
<tr>
<td>4pPAa5</td>
<td>Bubble dynamics in non-Newtonian fluids</td>
<td>John Allen and Ronald A. Roy</td>
<td>2283</td>
</tr>
<tr>
<td>4pPAa6</td>
<td>Giant response in dynamics of small bubbles</td>
<td>Iskander Sh. Akhatov, Claus-Dieter Ohl, Robert Mettin, Ulrich Parlitz, and Werner Lauterborn</td>
<td>2285</td>
</tr>
<tr>
<td>4pPAa7</td>
<td>Cavitation bubble dynamics induced by ultrasound waves</td>
<td>J.-L. Laborde, A. Hita, J.-P. Caltagirone, and A. Gérard</td>
<td>2287</td>
</tr>
<tr>
<td>4pPAa8</td>
<td>Cavitation and capillary wave from parametric decay scheme</td>
<td>Masanori Sato and Toshitaka Fujii</td>
<td>2289</td>
</tr>
<tr>
<td>4pPAb</td>
<td>GENERAL TOPICS IN PHYSICAL ACOUSTICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb1</td>
<td>Enhancement of acoustic cavitation effects by simultaneous multifrequency excitation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb2</td>
<td>Nonlinear wave propagation in cylindrical air-filled tubes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb3</td>
<td>Numerical simulation with experimental validation for nonlinear standing wave phenomena</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb4</td>
<td>Acoustic waves propagation from underground wave guide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb5</td>
<td>Diffraction of a sound wave on open end of a waveguide with impedance walls and impedance flanges</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb6</td>
<td>Dependence on wave guide width of elastic convolver efficiency</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb7</td>
<td>A new time-domain approach for nonlinear wave propagation: Comparison with the KZK equation approach in the case of unfocused CW beams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb8</td>
<td>Description of nonlinear waves in gas-filled tubes by the Burgers and the KZK equations with a fractional derivate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb9</td>
<td>Vibratory gyro-sensor using a trident tuning fork resonator with lateral width set in parallel with rotationary axis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb10</td>
<td>Effects of diffraction on the sensitivity of needle-type ultrasonic receivers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb11</td>
<td>Study of volcano-profiled ultrasonic field</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb12</td>
<td>Second harmonic component in the focused sound field diffracted by a straight edge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb13</td>
<td>Acoustic streaming and temperature elevation in a high viscous fluid by irradiation of ultrasound beams</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb14</td>
<td>Inversion of velocity statistical parameters from traveltimes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb15</td>
<td>Scattering of acoustic waves by porous media having a rigid frame</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb16</td>
<td>A*-wave spatial resonances on thin cylindrical shells: Experimental study</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb17</td>
<td>Diffraction and conversion of the A-wave on a T-structure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb18</td>
<td>Formulation of boundary value problem by a new principle of diffraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb19</td>
<td>Modelization of Kirchhoff scattering by a sound ray algorithm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4pPAb20</td>
<td>Analytical method for radiation and scattering problems in noncanonical domains</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4pPP AUDITORY ATTENTION II

4pPP1 The auditory attentional blink in a congenitally blind population ... 2333
Kim M. Goddard, Matthew I. Isaak, and Elizbieta B. Slawinski

4pPP2 The use of visible speech cues (speechreading) for directing auditory attention: Reducing temporal and spectral uncertainty in auditory detection of spoken sentences .. 2335
Ken W. Grant and Philip F. Seitz

4pPP3 Order effects in the measurement of auditory thresholds during bimodal divided attention .. 2337
Vishakha W. Rawool

4pPP4 The role of memory in the dual-task: Evidence from a frequency/amplitude judgment ... 2339
Erick Gallun, Ervin R. Hafter, and Anne-Marie Bonnel

4pPP5 Monitoring the simultaneous presentation of multiple spatialized speech signals in the free field .. 2341
W. Todd Nelson, Robert S. Bolia, Mark A. Ericson, and Richard L. McKinley

4pPP6 Sequential interactions in discrimination of target frequency increments trailed by irrelevant frequency increments: Effects of target duration and target-irrelevant frequency separation ... 2343
Blas Espinoza-Varas and Hyunsook Jang

4pPP7 Interactions of pairs of target and context tones based on relative frequency relation and degree of frequency uncertainty ... 2345
Donna L. Neff and Rebecca Wragge

4pPP8 Effects of tonal masker uncertainty on detection .. 2347
Elizbieta B. Slawinski and Bertram Scharf

4pPP9 Identification of brief auditory patterns .. 2349
Gerald Kidd, Jr., Christine R. Mason, and Chung-Yiu Peter Chiu

4pPP10 Selective attending to auditory streams in complex sequences: Frequency and/or temporal expectations? ... 2351
Carolyn Drake, Renaud Brochard, and Matthieu Adenier

4pPP11 Application of peripheral model to attentional filter of missing-fundamental tone 2353
Hiromitsu Miyazono, Tsuyoshi Usagawa, and Masanao Ebata

4pPP12 Short-term auditory memory interference: The effect of speech pitch salience 2355
Kazuo Ueda and Naoko Seo

4pPP13 Changing frequency after-effect of linear frequency glide .. 2357
Takuro Kayahara

4pPP14 Dynamic intensity change influences perceived pitch: Attentional differences between musicians and non-musicians ... 2359
John G. Neuhoff

4pPP15 Temporal properties of loudness recalibration .. 2361
Dan Mapes-Riordan and William W. Yost

4pSA VIBRATIONS OF COMPLEX STRUCTURES I

4pSA1 Uncertainty in modeling the dynamics of structures in mid-frequency range 2363
Kai-Ulrich Machens and Eike Brechlin

4pSA2 Reduction of ribbed plates to equivalent uniform structures for mid- to high-frequency structural acoustic analysis ... 2365
Donald B. Bliss and Linda P. Franzoni

4pSA3 An error measure for the shock testing of scale models ... 2367
Pierre Dupont and J. Gregory McDaniel

4pSA4 A new approach using finite element models for the prediction of minimum and maximum structural dynamic response ... 2369
Jean-Sébastien Genot and François Charron

4pSA5 FEM aided structural intensity measurement method for thick body 2371
Yoshikazu Kóike, Chie Aramaki, Kentaro Nakamura, and Sadayuki Ueha
4pSA6 Resilient mounting of engines ... 2373
 A. Nilsson, L. Kari, L. Feng, and U. Carlsson
4pSA7 Assessment of construction vibration impacts on historic structures ... 2375
 Chetlur G. Balachandran
4pSA8 Hybrid control for vibration and acoustics ... 2377
 Robert L. Clark and Dennis Bernstein
4pSA9 Active control of total structural intensity in a T-beam: General case ... 2379
 Sabih I. Hayek and Jungyun Won
4pSA10 Vibration isolation of two elastic structures using active compliance at the isolation mounts ... 2381
 Kenneth E. Jones and Y. F. Hwang

4pSC A HALF-CENTURY OF SPEECH RESEARCH

4pSC1 Half a century with speech science ... 2383
 Gunnar Fant
4pSC2 Toward models for human production and perception of speech ... 2385
 Kenneth N. Stevens
4pSC3 Juncures in speech communication ... 2387
 James L. Flanagan
4pSC4 Three questions for a theory of speech ... 2389
 Alvin M. Liberman
4pSC5 Speech research at the I.P. Pavlov Institute in Leningrad/St. Petersburg ... 2391
4pSC6 Speech research from acoustic transmission to gestural analysis ... 2393
 Katherine S. Harris
4pSC7 Chasing ideas in phonetics ... 2395
 Peter Ladefoged
4pSC8 Language and speech research: The more it changes the more it stays the same ... 2397
 Victoria A. Fromkin
4pSC9 Communication between minds—The ultimate goal of speech communication and the target of research for the next half-century ... 2399
 Hiroya Fujisaki

4pSP ACOUSTICS IN MULTIMEDIA—SYSTEMS ISSUES II

4pSP1 The acoustics and psychoacoustics of workstation audio systems ... 2401
 Floyd E. Toole
4pSP2 Using a personal computer platform to develop an information-rich learning environment for instruction in acoustics ... 2403
 Robert D. Celmer
4pSP3 The impact of system latency on dynamic performance in virtual acoustic environments ... 2405
 Elizabeth M. Wenzel
4pSP4 Immersive audio for desktop systems ... 2407
 C. Kyriakakis and T. Holman
4pSP5 Distributed-mode loudspeakers and their impact on intelligibility in multimedia and sound distribution ... 2409
 Peter Mapp and Henry Azima
4pSP6 A measurement of colouration in electroacoustic enhancement systems ... 2411
 M. Poletti
4pSP7 Criteria for accurate acoustic emulation ... 2413
 Adam McKeag, Anthony Place, and David McGrath
4pSP8 Multi-channel audio signal compression and quality assessment for AV communication ... 2415
 Jin-Woo Hong, Dae-Young Jang, and Seong-Han Kim
4pSP9 Reproduction of CD by PULSA (Providing ULtraSonic Atmosphere) .. 2417
Jouji Suzuki, Shin’ichiro Kaneko, and Kiyomitsu Ohno

4pSP10 A multi-processor system for the production of virtual sound fields 2419
Felipe Ordun˜a-Bustamante, Ricardo R. Boullosa, and Antonio P. López

4pUW 3-D PROPAGATION EFFECTS II: WHERE ARE WE TODAY IN MODELS AND MEASUREMENTS?

4pUW1 3-D effect on underwater acoustic propagation in the offshore area off Taiwan’s coast ... 2421
Chifang Chen, Jang-Jia Lin, Chi-Hua Liu, DuoHaw Liang, Chung-Wu Wang, and Ding Lee

4pUW2 High-resolution, three-dimensional measurements of low-frequency sound propagation in shallow water .. 2423
George V. Frisk, Kyle M. Becker, Laurence N. Connor, James A. Doutt, and Cynthia J. Sellers

4pUW3 A global hydroacoustic monitoring system for the Comprehensive Nuclear-Test-Ban Treaty—Plans and progress ... 2425
Martin W. Lawrence and Marta Galindo Arranz

4pUW4 Validation of source region energy partition calculations with small scale explosive experiments ... 2427
Douglas B. Clarke, Philip E. Harben, Steven L. Hunter, and Donald W. Rock

4pUW5 Three-dimensional propagation modeling in shallow water ... 2429
Gregory J. Orris and John S. Perkins

4pUW6 4-D modeling of sound propagation in shallow water with anisotropic sediment layers .. 2431
Xin Tang, Mohsen Badiey, and William L. Siegmann

4pUW7 Wavenumber extraction techniques for a three-dimensionally varying shallow water waveguide: A comparison ... 2433
Kyle M. Becker and George V. Frisk

4pUW8 Range-dependent matched-field source localization and tracking in shallow water on a continental slope .. 2435
Martin L. Taillefer and N. Ross Chapman

4pUW9 Experimental investigation of matched-field processing in a wedgelike shallow-water environment .. 2437
Paul A. Baxley

4pPL PLENARY LECTURE

4pPL1 Trends in modeling of structural-acoustics systems with structural complexity in low- and medium-frequency ranges ... 2439
Christian Soize

5aPLa PLENARY LECTURE

5aPLa1 Acoustics of two-phase fluids and sonoluminescence ... 2443
Robert I. Nigmatulin

5aAA CASE STUDIES OF PERFORMANCE SPACES

5aAA1 The Hong Kong Cultural Center Halls—Acoustical design and measurements 2447
A. Harold Marshall, Johan L. Nielsen, and M. Miklin Halstead

5aAA2 Modern measurements optimised diffusion and electronic enhancement in a large fan-shaped room ... 2449
John O’Keefe, Trevor Cox, Neil Muncy, and Steve Barbar
5aAA3 Recent acoustical measurements in the Christchurch Town Hall Auditorium A. Harold Marshall, Johan L. Nielsen, and M. Miklin Halstead

5aAA4 Calculation and measurement of acoustic factors for the Kirishima International Concert Hall Tatsumi Nakajima and Yoichi Ando

5aAA5 The interrelationship of musical excellence and acoustical excellence: A case study of the Gewandhaus, Leipzig, 1880–1900 Pamela Clements

5aAA6 Acoustical design of Sapporo Concert Hall Yasuhsisa Toyota, Ayumi Ozawa, and Katsuji Naniwa

5aAA7 Acoustical renovation of The Opheum Theatre, Vancouver, Canada John O'Keefe, Gilbert Soloudre, and John Bradley

5aAA8 The best remaining seat: A case study B. G. L. Vaupel and N. V. Jordan

5aAA9 Acoustic design and performance of the Bruce Mason Theatre Joanne Valentine and Christopher Day

5aAA10 3D impulse response measurements on S. Maria del Fiore Church, Florence, Italy Angelo Farina and Lamberto Tronchin

5aAA11 Simultaneous measurements of room-acoustic parameters using different measuring equipment Tor Halmrast, Anders Gade, and Bjørn Winsvold

5aAA12 Acoustic design and measurement of a circular hall improving the subjective preference at each seat Akio Takatsu, Shigeo Hase, Hiroyuki Sakai, Shin-ichi Sato, and Yoichi Ando

5aAO ACOUSTICS OF FISHERIES AND PLANKTON IV

5aAO1 Vessel avoidance of Norwegian spring spawning herring Rune Vabø, Kjell Olsen, and Ingvar Huse

5aAO2 FishMASS: ADCP technology adapted to split-beam fisheries echo sounding R. Lee Gordon, Len Zedel, and Tor Knutsen

5aAO3 The digital transducer, new sonar technology William C. Acker and Janusz Burczynski

5aAO4 An acoustic tag "radar-type" tracking system for fish behavior studies John Hedgepeth, David Fuhriman, David Geist, and Robert Johnson

5aAO5 Field trials using an acoustic buoy to measure fish response to vessel and trawl noise Christopher D. Wilson

5aAO6 Noise characteristic of Japanese fisheries research vessels Yoshimi Takao, Kouichi Sawada, Yoichi Miyanohana, Tsuyoshi Okumura, Masahiko Furusawa, and DooJin Hwang

5aBVa LITHOTRIPSY I

5aBVa1 ESWL—The evolution of a revolution: History, status quo and perspectives Ch. Chaussy and S. Thüroff

5aBVa2 Extracorporeal shock waves act by shock wave—gas bubble interaction Michael Delius and Wolfgang Eisenmenger

5aBVa3 Separation of cavitation and renal injury induced by shock wave lithotripsy (SWL) from SWL-induced impairment of renal hemodynamics Andrew P. Evan, Lynn R. Willis, Bret A. Connors, James A. McAteer, James E. Lingeman, Robin O. Cleveland, Michael R. Bailey, and Lawrence A. Crum

5aBVa4 The potential of lithotriptor shockwaves for gene therapy of tumors Douglas L. Miller, Richard A. Gies, Brian D. Thrall, and Shiping Bao

5aBVa5 Effects of lithotripter fields on biological tissues Diane Dalecki
5aBVa6 Biomechanical effects of ESWL shock waves
Bradford Sturtevant and Murtuza Lokhandwalla

5aBVa7 Effects of tissue constraint on shock wave-induced bubble oscillations in vivo
Pei Zhong, Iulian Cioanta, Franklin H. Cocks, and Glenn M. Preminger

5aBVa8 SWL cavitation damage in vitro: Pressurization unmasks a differential response of foil targets and isolated cells
James, A McAteer, Mark A. Stonehill, Karin Colmenares, James C. Williams, Andrew P. Evan, Robin O. Cleveland, Michael R. Bailey, and Lawrence A. Crum

5aBVa9 Effect of overpressure on dissolution and cavitation of bubbles stabilized on a metal surface
Robin O. Cleveland, Michael R. Bailey, Lawrence A. Crum, Mark A. Stonehill, James C. Williams, Jr., and James A. McAteer

5aBVb MEDICAL ULTRASOUND II—PROPAgATION, MEDIA CHARACTERIZATION AND MISCELLANEOUS TOPICS

5aBVb1 Are blood clots a Biot medium?
Pierre D. Mourad and Steve G. Kargl

5aBVb2 A stratified model for ultrasonic propagation in cancellous bone
Elinor R. Hubbuck, Timothy G. Leighton, Paul R. White, and Graham W. Petley

5aBVb3 Effects of the structural anisotropy and the porosity on ultrasonic wave propagation in bovine cancellous bone
Takahiko Otani and Atsushi Hosokawa

5aBVb4 Wide-band laser-acoustic spectroscopy of proteins
Alexander A. Karabutov and Natalia B. Podymova

5aBVb5 Wide-band acoustic spectroscopy of liquid phantoms of biological tissues
Valery G. Andreev, Alexander A. Karabutov, Yury A. Pischalnikov, and Natalia B. Podymova

5aBVb6 The necessity for acoustics in the biomedical engineering program
Daniel R. Raichel and Latif M. Jiji

5aEA SONAR TRANSDUCERS

5aEA1 Finite element simulation of piezoelectric transformers
Takao Tsuchiya, Yukio Kagawa, and Hiroki Okamura

5aEA2 A tubular piezoelectric actuator and its characteristic analysis by finite element modelling
Naoto Wakatsuki, Takao Tsuchiya, Yukio Kagawa, and Kazumichi Hatta

5aEA3 Substructuring in the finite element analysis of sonar transducer arrays
J. R. Dunn, C. L. Chen, and B. V. Smith

5aEA4 Sonar simulation and display techniques
Yuhong Guo, Hong Liu, and Junying Hui

5aEA5 Modified shifted sideband beamformer for swath bathymetry sonar
Haisen Li, Lan Yao, Xinsheng Xu, and Yingzi Wu

5aEA6 Specific acoustic impedance of the ultrasonic field by the square flat transducers
Tohru Imamura

5aEA7 Estimation of equivalent circuit parameters for piezoelectric transducer using least square method
Byung-Doo Jun and Koeng-Mo Sung

5aEA8 Study of the compound structured ultrasonic transducer made of PZT/PVDF
Moo J. Kim, Dong H. Kim, and Kang L. Ha

5aMU MUSICAL ACOUSTICS PASTICHE

5aMU1 Physics of music laboratory at the University of Washington
Vladimir Chaloupka
5aMU2 Dynamic optimal tuning of electronic keyboards as they are being played 2531
James E. Steck and Dean K. Roush

5aMU3 On the use of elements of piano notes to improve the identification of polyphonic piano sounds .. 2533
L. Rossi and G. Girolami

5aMU4 A new accurate model-based music synthesis technique by using scattering recurrent neural networks ... 2535
Sheng-Fu Liang, Alvin W. Y. Su, and Cheng-Teng Lin

5aMU5 Musical instrument synthesis by nonregenerative nonlinear processing 2537
James W. Beauchamp

5aMU6 Time-domain modeling and numerical simulation of timpani 2539
Leila Rhaouti, Patrick Joly, and Antoine Chaigne

5aMU7 Modeling Chinese musical instruments .. 2541
Andrew Horner and Lydia Ayers

5aNSa AIRCRAFT NOISE: GENERAL

5aNSa1 Low frequency noise around airports .. 2543
M. Vallet and J. C. Bruyere

5aNSa2 Subjective response to aircraft flyover noise 2545
Sherilyn A. Brown and R. David Hilliard

5aNSa3 Low flying military aircraft noise—Operational flying 2547
Ian H. Flindell and Ralph J. Weston

5aNSa4 Converting noise level into number: A new method to quantify k-coefficients reveals distance-dependent over- and under-energetic responses around the same airport ... 2549
Karl Th. Kalveram

5aNSa5 Relational anomalies in “A” weighted and linear scale sound level measurements associated with jet aircraft departures 2551
Errol Nelson and Allan Furney

5aNSb SOURCE NOISE ANALYSIS AND CONTROL

5aNSb1 Frequency dependent velocity scaling and small axial flow fans 2553
D. A. Quinlan

5aNSb2 Noise diagnostic and reduction of a scooter engine motorcycle 2555
Cho-Ihsin Lu and Jen-chieh Cheng

5aNSb3 Sound generation by turbulent non-premixed flames 2557
Sikke A. Klein and Jim B. W. Kok

5aNSb4 Investigation of centrifugal blower noises 2559
Christopher L. Banks and Sean F. Wu

5aNSc SOUNDSCAPES —“ACOUSTICAL LANDSCAPES” IN NATURAL AND BUILT ENVIRONMENTS

5aNSc1 Supportive sound environments in building research 2561
Brigitta Berglund, Edward Hojan, and Anna Purmann

5aNSc2 Features of Japanese soundscapes recognized by foreigners: A questionnaire survey on sounds for the foreigners living in Fukuoka 2563
Shin-ichiro Iwamiya

5aNSc3 Sound design for an exhibition ... 2565
Peter Coulter

5aNSc4 Survey on the actual condition of the sound environment in commercial spaces 2567
Michiko So and Sho Kimura
5aPAa SONOCHEMISTRY AND SONOLUMINESCENCE: SL I

5aPAa1 Stability in single bubble sonoluminescence .. D. Felipe Gaitan and R. Glynn Holt 2569

5aPAa2 Pulse width and shape in single bubble sonoluminescence B. Gompf, R. Pecha, G. Nick, and W. Eisenmenger 2571

5aPAa3 Predictions for upscaling sonoluminescence Sascha Hilgenfeldt and Detlef Lohse 2573

5aPAa4 Single-bubble sonoluminescence and liquid fracture A. Prosperetti 2575

5aPAa5 Conditions during multi-bubble sonoluminescence Kenneth S. Suslick, Yuri T. Didenko, and William B. McNamara, III 2577

5aPAa6 Sonoluminescence and its neighbor cavitation bubble luminescence Werner H. Lauterborn, Thomas Kurz, and Reinhard Geisler 2579

5aPAa7 Influence of surfactants on the intensity of single bubble sonoluminescence ... Sascha Hilgenfeldt, Detlef Lohse, and Rüdiger Tögel 2581

5aPAa8 Radial response of single-bubble sonoluminescence to novel excitations K. Hargreaves, T. J. Matula, L. A. Crum, and W. C. Moss 2583

5aPAa9 Measurements of the dynamical response of single-bubble sonoluminescence near the luminescence and extinction thresholds. T. J. Matula and L. A. Crum 2585

5aPAb ACOUSTO-OPTICS AND OPTO-ACOUSTICS

5aPAb1 Planar backward projection of transient fields obtained from optical methods G. T. Clement, R. Liu, P. R. Stepanishen, and S. V. Letcher 2587

5aPAb2 Measurement of ultrasonic vector displacement with Fabry-Perot interferometer M. L. Qian, Y. D. Pan, M. Deshamps, and B. Audoin 2589

5aPAb3 Two-frequency degeneracy of acousto-optic interaction in paratellurite Alexander V. Yurchenko and Vladimir M. Moskalev 2591

5aPAb4 Visualization of a phase structure of sound field in a Bragg cell. Vadim A. Goncharov, Leonid N. Ichenko, Vladimir M. Moskalev, Eugene N. Smirnov, and Alexander V. Yurchenko 2593

5aPAb5 Radiation acoustics—Photoacoustics and acousto-optics of penetrating radiation Leonid M. Lyamshev 2595

5aPAb6 Photoacoustic signal in the system of a thin oil layer on the water surface Antoni Sliwinski, Stanislaw Pogorzelski, and Janusz Szurkowski 2597

5aPP A MICROBREW OF SPEECH PERCEPTION AND HEARING IMPAIRMENT

5aPP1 Perceptual consequences of amplitude perturbations in the wavelet coding of speech . Nicolle H. van Schijndel, Tammo Houtgast, and Joost M. Festen 2599

5aPP2 The effect of spectral resolution on speech perception in a multi-talker babble background ... Bom Jun Kwon and Christopher W. Turner 2601

5aPP3 Application of auditory models to discrimination thresholds of voicing parameters Shari L. Campbell, Kathryn H. Arehart, Ronald C. Scherer, and Amy N. Butler 2603

5aPP4 Audio signals in domestic appliances evaluated in terms of the hearing ability of older adults .. Kenji Kurakata, Yasuyoshi Kuba, Yasuo Kuchinomachi, and Kazuma Matsushita 2605

5aPP5 The effects of age and hearing impairment on the time course of backward masking .. Sara Elizabeth Gehr and Mitchell S. Sommers 2607

5aPP6 Speech intelligibility and localization in a complex environment by listeners with hearing impairments .. Monica L. Hawley, Ruth Y. Litovsky, and H. Steven Colburn 2609
<table>
<thead>
<tr>
<th>5aPP7</th>
<th>A comparison of monotic and dichotic musical-interval identification in listeners with high-frequency cochlear-based hearing loss</th>
<th>2611</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kathryn Hoberg Arehart and Edward M. Burns</td>
<td></td>
</tr>
<tr>
<td>5aPP8</td>
<td>Minimum bandwidth required for speech reception by normal-hearing and hearing-impaired listeners</td>
<td>2613</td>
</tr>
<tr>
<td></td>
<td>Ingrid M. Noordhoek, Tammo Houtgast, and Joost M. Festen</td>
<td></td>
</tr>
<tr>
<td>5aPP9</td>
<td>Loudness of dynamic stimuli in cochlear-impaired listeners</td>
<td>2615</td>
</tr>
<tr>
<td></td>
<td>Chaoying Zhang and Fan-Gang Zeng</td>
<td></td>
</tr>
<tr>
<td>5aPP10</td>
<td>Further effects of cochlear loss on ICP (Ipsilateral Comparison Paradigm) loudness adaptation, and loudness constancy</td>
<td>2617</td>
</tr>
<tr>
<td></td>
<td>Rebecca A. Ludwig, Hongwei Dou, Ernest M. Weiler, Laura W. Kretschmer, David E. Sandman, and Eleanor Stromberg</td>
<td></td>
</tr>
<tr>
<td>5aPP11</td>
<td>Evoked otoacoustic emissions, suppression and comparison to loudness constancy at speech frequencies</td>
<td>2619</td>
</tr>
<tr>
<td></td>
<td>Ernest M. Weiler, Hongwei Dou, Robert S. Tannen, David E. Sandman, William N. Dember, and Joel S. Warm</td>
<td></td>
</tr>
<tr>
<td>5aPP12</td>
<td>Virtual midplane localization in subjects with sensorineural hearing loss</td>
<td>2621</td>
</tr>
<tr>
<td></td>
<td>Helen J. Simon, Inna Aleksandrovsky, and Al Lotze</td>
<td></td>
</tr>
<tr>
<td>5aPP13</td>
<td>Use of temporal information in recognition of amplitude-compressed speech by older adults</td>
<td>2623</td>
</tr>
<tr>
<td></td>
<td>Pamela E. Souza and Johanna J. Larsen</td>
<td></td>
</tr>
<tr>
<td>5aPP14</td>
<td>Apparent effects of the use of digital hearing aid “CLAIDHA” on several hearing functions of impaired listeners</td>
<td>2625</td>
</tr>
<tr>
<td></td>
<td>Hiroshi Hidaka, Naoko Sasaki, Tetsuaki Kawase, Tomonori Takasaka, Kenji Ozawa, Yoiti Suzuki, and Toshio Sone</td>
<td></td>
</tr>
<tr>
<td>5aPP15</td>
<td>FM systems with children who are deaf-blind</td>
<td>2627</td>
</tr>
<tr>
<td></td>
<td>Barbara Franklin</td>
<td></td>
</tr>
<tr>
<td>5aPP16</td>
<td>A metric for determining the degree of compression of a processed signal</td>
<td>2629</td>
</tr>
<tr>
<td></td>
<td>Jon C. Schmidt and Janet Rutledge</td>
<td></td>
</tr>
<tr>
<td>5aPP17</td>
<td>Modeling tactile speech perception with auditory simulation</td>
<td>2631</td>
</tr>
<tr>
<td></td>
<td>Albert T. Lash, Janet M. Weisenberger, and Ying Xu</td>
<td></td>
</tr>
<tr>
<td>5aPP18</td>
<td>A design of a tactile voice coder with different tactile sensations for the hearing impaired</td>
<td>2633</td>
</tr>
<tr>
<td></td>
<td>Chikamune Wada, Shuichi Ino, Hisakazu Shoji, and Tohru Ifukube</td>
<td></td>
</tr>
<tr>
<td>5aPP19</td>
<td>Sensitivity of transiently-evoked otoacoustic emission to a long-term exposure of impulsive blast noise</td>
<td>2635</td>
</tr>
<tr>
<td></td>
<td>Amnon Duvdevany, Miriam Furst, and Giora Rosenhouse</td>
<td></td>
</tr>
<tr>
<td>5aPP20</td>
<td>The effects of dexamethasone following an acute acoustic trauma</td>
<td>2637</td>
</tr>
<tr>
<td></td>
<td>William A. Ahroon, Ann R. Johnson, B. Sheldon Hagar, and Roger P. Hamernik</td>
<td></td>
</tr>
<tr>
<td>5aPP21</td>
<td>Protective effects of magnesium on noise-induced hearing loss: Animal studies</td>
<td>2639</td>
</tr>
<tr>
<td></td>
<td>Fred Scheibe and Heidemarie Haupt</td>
<td></td>
</tr>
<tr>
<td>5aPP22</td>
<td>Effects of impulse noise on the hearing of fetal sheep in utero</td>
<td>2641</td>
</tr>
<tr>
<td></td>
<td>Kenneth J. Gerhardt, Xinyan Huang, Scott K. Griffiths, and Robert M. Abrams</td>
<td></td>
</tr>
</tbody>
</table>

5aSA VIBRATIONS OF STRUCTURAL ELEMENTS

<table>
<thead>
<tr>
<th>5aSA1</th>
<th>Moment and force mobilities of semi-infinite tapered beams</th>
<th>2643</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E. J. M. Nijman and B. A. T. Petersson</td>
<td></td>
</tr>
<tr>
<td>5aSA2</td>
<td>Vibrational power transmission in asymmetric framework structures</td>
<td>2645</td>
</tr>
<tr>
<td></td>
<td>J. L. Horner</td>
<td></td>
</tr>
<tr>
<td>5aSA3</td>
<td>Vibration transmission via a non-ideal beam junction: FEM and analytical combined methods</td>
<td>2647</td>
</tr>
<tr>
<td></td>
<td>Eric Rébillard and Igor Grouchetski</td>
<td></td>
</tr>
<tr>
<td>5aSA4</td>
<td>Measurement of flexural intensity using a dual mode fiber optic sensor</td>
<td>2649</td>
</tr>
<tr>
<td></td>
<td>Bernard J. Sklanka, Karl M. Reichard, and Timothy E. McDevitt</td>
<td></td>
</tr>
</tbody>
</table>
The condition for beam-bending modes to dominate in the vibro-acoustic behavior of a circular cylindrical shell.. 2651
C. Wang and J. C. S. Lai

The effect of rib resonances on the vibration and wave scattering of a ribbed cylindrical shell .. 2653
Martin H. Marcus

A simple model for structure-borne sound transmission based on direct wave and first reflections ... 2655
J. Liang and B. A. T. Petersson

Estimating the vibrational energy of an elastic structure via the input impedance 2657
Yuri I. Bobrovnitskii

Improving convergence in scattering problems by smoothing discrete constraints using an approximate convolution with a smoothed composite Green’s function 2659
R. C. Loftman and D. B. Bliss

5aSC PRODUCTION AND OTHER TOPICS

Vocal tract shape estimation using three non-invasive transducers 2661
Russel K. Long, Brad Story, and Ingo Titze

Synthesis of sentence-level speech based on measured vocal tract area functions................... 2663
Brad H. Story, Ingo R. Titze, and Russel Long

Effects of naturally occurring loads on jaw movements during speech 2665
Douglas M. Shillier, Paul L. Gribble, and David J. Ostry

Contrasting chest and falsetto-like vibration patterns of the vocal folds 2667
David A. Berry and Douglas W. Monquenin

The effect of shear thinning in vocal fold tissues—Or, why we can phonate over two octaves in pitch ... 2669
Ingo R. Titze and Roger W. Chan

Pressure-flow relationship in a biophysical model of phonation 2671
Fariborz Alipour and Ingo R. Titze

Perception of coarticulated German vowels by prelingual infants: Formant transitions specify vowel identity ... 2673
Ocke-Schwen Bohn and Linda Polka

Some observations of the tense-lax distinction theory with reference to English and Korean ... 2675
Dae-Won Kim

Speech intelligibility is highly tolerant of cross-channel spectral asynchrony 2677
Steven Greenberg and Takayuki Arai

5aSP SIGNAL PROCESSING FOR MEDICAL ULTRASOUND

Beyond current medical ultrasonic imaging: Opportunities for advanced signal processing ... 2679
James G. Miller

The evolution of medical ultrasound imaging systems ... 2681
John M. Reid

3-D ultrasound imaging of the prostate ... 2683
A. Fenster, S. Tong, and D. B. Downey

The analysis and classification of small-scale tissue structures using the generalized spectrum ... 2685
Kevin D. Donohue, Tomy Varghese, Flemming Forsberg, and Ethan J. Halpern

A Wold decomposition based autonomous system for detecting lesions in ultrasound images of the breast ... 2687
Georgia Georgiou and Fernand S. Cohen

Tracking and correcting for organ motion artifacts in ultrasound tomography systems .. 2689
Amar C. Dhanantwari and Stergios Stergiopoulos
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5aSP7</td>
<td>Wavefront distortion measurements in the human breast</td>
<td>Roderick C. Gauss, Mary Scott Soo, and Gregg E. Trahey</td>
<td>2691</td>
</tr>
<tr>
<td>5aUW1</td>
<td>A practical model for high-frequency seabed bistatic scattering strength</td>
<td>Darrell R. Jackson and Anatoliy N. Ivakin</td>
<td>2693</td>
</tr>
<tr>
<td>5aUW2</td>
<td>High frequency bistatic scattering from sediments—Experiments, modeling, future work</td>
<td>Kevin Williams, Darrell Jackson, and Dajun Tang</td>
<td>2695</td>
</tr>
<tr>
<td>5aUW3</td>
<td>Models of volume and roughness scattering in stratified seabeds</td>
<td>Anatoliy N. Ivakin</td>
<td>2697</td>
</tr>
<tr>
<td>5aUW4</td>
<td>Bottom volume scattering: Modeling and data analysis</td>
<td>George V. Frisk, Dan Li, and Dajun Tang</td>
<td>2699</td>
</tr>
<tr>
<td>5aUW5</td>
<td>High-frequency bottom backscattering from a homogeneous seabed</td>
<td>Kevin B. Briggs and Steve Stanic</td>
<td>2701</td>
</tr>
<tr>
<td>5aUW6</td>
<td>A porous medium with porosity variations</td>
<td>N. P. Chotiros</td>
<td>2703</td>
</tr>
<tr>
<td>5aUW7</td>
<td>A comparison of bistatic scattering from two geologically distinct mid-ocean ridges</td>
<td>Nicholas C. Makris and Chin Swee Chia</td>
<td>2705</td>
</tr>
<tr>
<td>5aUW8</td>
<td>Multistatic scattering from anisotropically rough interfaces in horizontally stratified waveguides</td>
<td>Jaiyong Lee and Henrik Schmidt</td>
<td>2707</td>
</tr>
<tr>
<td>5aUW9</td>
<td>Integral equation methods for bistatic volume scattering from the seafloor</td>
<td>Christopher D. Jones and Darrell R. Jackson</td>
<td>2709</td>
</tr>
<tr>
<td>5aUW10</td>
<td>High frequency, broadband time/frequency spreading for bistatic geometries</td>
<td>Richard Lee Culver and Christopher J. Link</td>
<td>2711</td>
</tr>
<tr>
<td>5aUW11</td>
<td>Sound wave attenuation in shallow water with rough boundaries</td>
<td>Boris G. Katsnelson, Venedict M. Kuz'kin, Sergey A. Pereselkov, and Valery G. Petnikov</td>
<td>2713</td>
</tr>
<tr>
<td>5aUW12</td>
<td>Modal theory of sound propagation in a randomly irregular shallow water waveguide</td>
<td>Boris G. Katsnelson and Sergey A. Pereselkov</td>
<td>2715</td>
</tr>
<tr>
<td>5aPlb</td>
<td>PLENARY LECTURE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5aPlb1</td>
<td>Nonlinearity, complexity, and the sounds of musical instruments</td>
<td>Neville H. Fletcher</td>
<td>2717</td>
</tr>
<tr>
<td>5pAAa</td>
<td>CLASSROOM ACOUSTICS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5pAAa1</td>
<td>Classroom acoustics I: The acoustical learning environment: Participatory action research in classrooms</td>
<td>Gary W. Siebein, Mary Jo Hasell, Philip Abbott, Martin A. Gold, Hee Won Lee, Mitchell Lehde, Christopher R. Herr, and Carl C. Crandell</td>
<td>2721</td>
</tr>
<tr>
<td>5pAAa2</td>
<td>Classroom acoustics II: Acoustical conditions in elementary school classrooms</td>
<td>Martin A. Gold, Hee Won Lee, Gary W. Siebein, Mitchell Lehde, John Ashby, Mary Jo Hasell, Philip Abbott, and Carl C. Crandell</td>
<td>2723</td>
</tr>
<tr>
<td>5pAAa3</td>
<td>Classroom acoustics III: Acoustical model studies of elementary school classrooms</td>
<td>Gary W. Siebein, Mitchell Lehde, Hee Won Lee, John Ashby, Martin A. Gold, Mary Jo Hasell, Philip Abbott, and Carl C. Crandell</td>
<td>2725</td>
</tr>
</tbody>
</table>
Assessing speech intelligibility in classrooms at the University of Washington

Dean Heerwagen and Tarik Khiati

ROOM ACOUSTICS MEASUREMENT TECHNIQUES, ABSORPTION AND DIFFUSION

Characterising scattering from room surfaces

T. J. Hargreaves, T. J. Cox, Y. W. Lam, and P. D’Antonio

Numerical study on sound absorption characteristics of brick/block absorbing walls

Shinichi Sakamoto, Dong-Jun Joe, Hikari Mukai, and Hideki Tachibana

Absorption characteristics of a double-leaf membrane with an absorptive layer in its cavity

Kimihiro Sakagami, Toru Uyama, Masakazu Kiyama, and Masayuki Morimoto

Numerical simulations of the modified Schroeder diffuser structure

Antti Jarvinen, Kaarina Melkas, and Lauri Savioja

Evaluation of spatial information from artificial head and four-microphone array measurements

Jörg Becker and Markus Sapp

A combined transfer matrix and beam tracing model to predict sound fields in rooms with extended reaction surfaces

Murray Hodgson, Andrew Wareing, and Callum Campbell

Sound absorbers using microperforated layers

J. Kang, X. Zha, and H. V. Fuchs

The prediction of reverberation time using neural network analysis

Joseph Namariello and Fergus Fricke

Sound fields caused by diffuse-type reflectors with periodic profile

Daiji Takahashi

Directivity patterns of small explosions

Miguel Arana

Sound absorption measurements in diffuse field: A study of parameters

Paulo Massarani, Marco Nabuco, and Roberto Tenenbaum

Dependence of accuracy of the reverberation time measurement on input filters

Dragana S. Sumarac

Reverberation time directly obtained from squared impulse response envelope

Fumiaki Satoh, Yoshito Hidaka, and Hideki Tachibana

Effects of flow resistance on acoustic performance of permeable elastic-plate absorbers

Manabu Tanaka and Daiji Takahashi

Qualitative evaluations of the acoustics of rooms: Real room studies and headphone studies

Martin A. Gold

On the acoustical characteristics of a balloon

Anthony Nash

Sound absorption by a large-size isolated acoustic resonator with a cylindrical cavity

Vytautas J. Stauskis

Influence of distance and sound recording system on intelligibility in highly reverberant conditions

Robert Ruiz and Isabelle Ballet

Sound field in long enclosures with diffusely reflecting boundaries

Judicaël Picaut, Laurent Simon, and Jean-Domique Polack

Reverberance of an existing hall in relation to subsequent reverberation time and SPL

Shigeo Hase, Akio Takatsu, Shin-ichi Sato, Hiroyuki Sakai, and Yoichi Ando
5pAO ACOUSTICS OF FISHERIES AND PLANKTON V

5pAO1 Bioacoustic resonance absorption spectroscopy ... 2771
 Orest Diachok

5pAO2 The application of wideband signals in fisheries and plankton acoustics 2773
 John E. Ehrenberg and Thomas C. Torkelson

5pAO3 Wide band fisheries sounder; from individual echoes analysis to classification of
 schools at sea .. 2775
 Manell E. Zakharia

5pAO4 Searching for species identifiers in multi-frequency target strength variability 2777
 James J. Dawson

5pAO5 A broadband acoustic fish identification system ... 2779
 Gerald F. Denny and Patrick K. Simpson

5pAO6 The use of two frequencies to interpret acoustic scattering layers 2781
 Denise R. McKelvey

5pAO7 Fish’n krill: A 38/120 kHz acoustic separation ... 2783
 Yvan Simard

5pAO8 Multi-frequency acoustic assessment of fisheries and plankton resources 2785
 Thomas C. Torkelson, Thomas C. Austin, and Peter H. Wiebe

5pAO9 Pulse compression processing of zooplankton echoes 2787
 Joseph D. Warren, Timothy K. Stanton, Dezhang Chu, Duncan E. McGehee, and
 Robert L. Eastwood

5pAO10 Multi-static, multi-frequency scattering from zooplankton 2789
 C. F. Greenlaw, D. V. Holliday, and D. E. McGehee

5pAO11 Laboratory studies and theoretical modeling of bistatic scattering of fish 2791
 Li Ding and Zhen Ye

5pBV LITHOTRIPSY II

5pBV1 Shock wave measuring techniques in liquids ... 2793
 Wolfgang Eisenmenger

5pBV2 Full wave modeling of lithotripter fields .. 2795
 Eckard Steiger

5pBV3 Acoustic cavitation generated by lithotripsy pulses: A comparison of theory and
 experiment .. 2797
 Andrew J. Coleman and Mark D. Cahill

5pBV4 Influence of the pressure time waveform on the transient cavitation effect in vitro
 and ex vivo .. 2799
 D. Cathignol, J. Tavakkoli, A. Birer, and A. Arefiev

5pBV5 Stone tracking with time-reversal techniques ... 2801
 Jean-Louis Thomas, Françoïs Wu, and Mathias Fink

5pBV6 On a mechanism of target disintegration at shock wave focusing in ESWL 2803
 Valery K. Kedrinskii

5pBV7 First in vitro experiments using a new reflector to concentrate shock waves for
 ESWL ... 2805
 Achim M. Loske and Fernando E. Prieto

5pBV8 Use of two pulses to control cavitation in lithotripsy 2807
 Michael R. Bailey, Robin O. Cleveland, David T. Blackstock, and Lawrence A. Crum

5pBV9 Detection and control of lithotripsy-induced cavitation in blood 2809
 Brenda Jordan, Michael R. Bailey, Robin O. Cleveland, and Lawrence A. Crum

5pBV10 Experiments on the relation of shock wave parameters to stone disintegration 2811
 Thomas Dreyer, Rainer E. Riedlinger, and Eckard Steiger

5pEaa SCATTERING AND RADIATION

5pEaa1 Scattering by a horizontal strip on a hard side wall .. 2813
 Djamel Ouis and Sven G. Lindblad
5pEa2 Acoustic wave scattering from a coated cylindrical shell
Sung H. Ko and Bruce E. Sandman .. 2815

5pEa3 Numerical solution of the Euler equations with high-order, compact centered
schemes ... 2817
John A. Ekaterinaris

5pEa4 Modeling acoustic radiation from end-initiated explosive line charges
William J. Marshall .. 2819

5pEa5 Resonant frequencies into degeneration of hybrid longitudinal and torsional
vibration system ... 2821
Tieying Zhou, Liqun Zhang, and Yi Xue

5pEa6 The estimation of an interior sound field by source method
Gee-Pinn James Too and Shing Maw Wang 2823

5pEb ACOUSTIC WAVEGUIDES

5pEb1 Insertion loss measurements of an acoustical enclosure by using sound power and
MLS methods ... 2825
Pedro Cobo, Carlos Ranz, José S. Santiago, José Pons, Manuel Siguero,
and Carmen Delgado

5pEb2 Intensity measurements in various rooms/a new intensity probe
W. F. Druyvesteyn and H. E. de Bree ... 2827

5pEb3 In situ absorption measurements using a transfer function technique and MLS
G. Dutilleux, T. E. Vigran, and U. R. Kristiansen 2829

5pEb4 Lumped impedance of a planar discontinuity in an acoustic waveguide
Ralph T. Muehleisen and Anthony A. Atchley 2831

5pEb5 A short water-filled pulse tube for the measurement of the acoustic properties of
materials at low frequencies ... 2833
Debra M. Kenney and Peter H. Rogers

5pEb6 Generation of low-frequency acoustic waves in electrolytes
Bronisław Żołtógórski ... 2835

5pPaa SONOCHEMISTRY AND SONOLUMINESCENCE: SL II

5pPa1 Energy focusing in bubbly flows... 2837
Seth Putterman, Keith Weninger, Robert A. Hiller, and Bradley P. Barber

5pPa2 Sonoluminescence stability for gas saturations down to 0.01 Torr
Jeffrey A. Ketterling and Robert E. Apfel 2839

5pPa3 The effects of high magnetic fields on sonoluminescence
Joseph Young, Hyung Cho, and Woowon Kang 2841

5pPa4 Computed spectral and temporal emissions from a sonoluminescing bubble
W. C. Moss, J. A. Harte, J. L. Levatin, P. W. Rambo, D. A. Young, G. B. Zimmerman,
and I. H. Zimmerman ... 2843

5pPa5 Dynamics of gas mixtures in sonoluminescence bubbles
Andrew J. Szeri and Brian D. Storey ... 2845

5pPa6 Time resolved measurements of optical emission from sonoluminescence
D. Froula, R. W. Lee, W. C. Moss, and P. E. Young 2847

5pPa7 Single bubble sonoluminescence: Acoustic emission measurements with a fiber optic
probe hydrophone ... 2849
B. Gompf, Z. Q. Wang, R. Pecha, and W. Eisenmenger

5pPa8 Luminescence from spherically and aspherically collapsing laser induced bubbles
Claus-Dieter Ohl, Olgerd Lindau, and Werner H. Lauterborn 2851

5pPa9 On the theory of supercompression of a gas bubble in a liquid-filled flask

5pPa10 Observations of single-bubble sonoluminescence in micro-gravity and hyper-gravity
Jeremy E. Young, Nathaniel K. Hicks, A. C. Binner, Susan L. Richardson,
Mark J. Marr-Lyon, and Philip L. Marston 2855
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pPAa11</td>
<td>Analytic solutions of field distributions inside SL bubbles</td>
<td>R. Günther</td>
<td>2857</td>
</tr>
<tr>
<td>5pPAa12</td>
<td>Shock formation in a sonoluminescing gas bubble</td>
<td>Takeru Yano</td>
<td>2859</td>
</tr>
<tr>
<td>5pPAa13</td>
<td>Thermal wave from a sonoluminescing gas bubble</td>
<td>Ho-Young Kwak, Yoon Pyo Lee, and Sarng Woo Karng</td>
<td>2861</td>
</tr>
<tr>
<td>5pPAa14</td>
<td>Effect of quantum vacuum radiation on the bubble dynamics in sonoluminescence</td>
<td>Weizhong Chen and Rongjue Wei</td>
<td>2863</td>
</tr>
<tr>
<td>5pPAa15</td>
<td>Sonoluminescence: The effect of magnetic fields in the Planck theory</td>
<td>Thomas V. Prevenslik</td>
<td>2865</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pPAb1</td>
<td>Chaotic dynamics in acoustics</td>
<td>Werner Lauterborn</td>
<td>2867</td>
</tr>
<tr>
<td>5pPAb2</td>
<td>Nonlinearities in the bioeffects of ultrasound</td>
<td>Edwin L. Carstensen</td>
<td>2869</td>
</tr>
<tr>
<td>5pPAb3</td>
<td>Solitary waves and solitons in acoustics</td>
<td>Nobumasa Sugimoto</td>
<td>2871</td>
</tr>
<tr>
<td>5pPAb4</td>
<td>Some consideration about processes of soliton formation from initially sinusoidal waveform in thin fiber of fused silica</td>
<td>Akira Nakamura</td>
<td>2873</td>
</tr>
<tr>
<td>5pPAb5</td>
<td>Fast spectral algorithm for modeling focused sound beams in a highly nonlinear regime</td>
<td>Vera A. Khokhlova, Michalakis A. Averkiou, Steven J. Younghouse, Mark F. Hamilton, and Lawrence A. Crum</td>
<td>2875</td>
</tr>
<tr>
<td>5pPAb6</td>
<td>Acoustic nonlinearity calculations using the Tait equation of state</td>
<td>Bruce Hartmann, Gilbert F. Lee, and Edward Balizer</td>
<td>2877</td>
</tr>
<tr>
<td>5pPAb7</td>
<td>Acoustic streaming near Albunex® spheres</td>
<td>Gerard Gormley and Junru Wu</td>
<td>2879</td>
</tr>
<tr>
<td>5pPAb9</td>
<td>Determination of the acoustic nonlinearity parameter B/A using a phase locked ultrasonic interferometer</td>
<td>J. R. Davies, J. Tapson, B. Mortimer, and B. Skews</td>
<td>2883</td>
</tr>
<tr>
<td>5pPAb10</td>
<td>Experimental measurement and numerical modelling of nonlinear propagation in biological fluids</td>
<td>Victor F. Humphrey, Prashant K. Verma, and Francis A. Duck</td>
<td>2885</td>
</tr>
<tr>
<td>5pPAb11</td>
<td>Asymptotically-unified exact solution of Khokhlov-Zabolotskaya equation</td>
<td>Yuri N. Makov</td>
<td>2887</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Author(s)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pPP1</td>
<td>Binaural coherence and the localization of sound in rooms</td>
<td>William M. Hartmann, Zachary Constan, and Brad Rakerd</td>
<td>2889</td>
</tr>
<tr>
<td>5pPP2</td>
<td>Interaural correlation sensitivity</td>
<td>John F. Culling, Matthew Spurchise, and H. Steven Colburn</td>
<td>2891</td>
</tr>
<tr>
<td>5pPP3</td>
<td>Modeling the ‘effective’ binaural signal processing in detection experiments</td>
<td>Carsten Zerbs, Torsten Dau, and Birger Kollmeier</td>
<td>2893</td>
</tr>
<tr>
<td>5pPP4</td>
<td>The influence of masker variability on estimates of monaural and binaural critical bandwidths</td>
<td>Armin Kohlrausch, Steven van de Par, and Jeroen Breebaart</td>
<td>2895</td>
</tr>
<tr>
<td>5pPP5</td>
<td>Modeling spectral integration in binaural signal detection</td>
<td>Jeroen Breebaart, Steven van de Par, and Armin Kohlrausch</td>
<td>2897</td>
</tr>
</tbody>
</table>
The role of the low frequency component of head related transfer function for median plane localization
Motoki Yairi, Yasuko Kuroki, Masayuki Morimoto, and Kazuhiro Iida

The AUDIS catalog of human HRTFs
Jens Blauert, Marc Brüggen, Klaus Hartung, Adelbert W. Bronkhorst, Rob Drullmann, Gerard Reynaud, Lionel Pellieux, Winfried Krebber, and Roland Sottek

A modeling of distance perception based on auditory parallax model
Yoiti Suzuki, Hae-Young Kim, Shouichi Takane, and Toshio Sone

Evidence of spatially-tuned auditory analysers
Russell L. Martin and Ester Klimkeit

Detection of Doppler-like signals
Mark A. Ericson and Lawrence L. Feth

Measurement and analysis of the structure borne sound of a fan installation:
Evaluation of source signal filtering techniques and rotational degrees of freedom
M. A. Sanderson, L. Ivarsson, and A. G. Troshin

Modelling the vibration behavior of an induction motor
C. Wang and J. C. S. Lai

Model-based shaping of vibroacoustic properties of gears
Stanislaw Radkowski

Experimental identification of mechanical joint properties
Olivier Chiello, Franck Sgard, and Noureddine Atalla

The vibroacoustical analysis of the ladle crane
Jerzy Wiciak, Marek Iwaniec, and Ryszard Panuszka

Metal and composite aircraft panels: Selection of parameters optimal from the viewpoint of acoustic fatigue lifetime
Sergey N. Baranov, Nikolay I. Baranov, Lev S. Kuravsky, and Konstantin P. Zhukov

The controversy of nasalized fricatives
John J. Ohala, Maria-Josep Solé, and Goangshiuan Ying

Aerodynamic characteristics of trills
Maria-Josep Solé, John J. Ohala, and Goangshiuan Ying

Motor equivalence in the production of /ʃ/.
Joseph S. Perkell, Melanie L. Matthies, and Majid Zandipour

Further results on the perception of place coarticulation in Taiwanese stops
Shu-hui Peng and Terrance M. Nearey

Ejectives in Tanana Athabaskan
Siri G. Tuttle

Perception of synthesised Hindi geminate and cluster sounds
Nisheeth Shrotiariya and S. S. Agrawal

Integration of acoustic cues in Spanish voiced stops
Sergio Feijóo, Santiago Fernández, and Ramón Balsa

Acoustic properties of English fricatives
Allard Jongman, Joan Sereno, Ratree Wayland, and Serena Wong

Role of F1 in the perception of voice offset time as a cue for preaspiration
Jörgen Pind

Vowel and consonant durations as cues for quantity in Icelandic
Jörgen Pind

Timing effects on successive alveolar consonants in Swedish
Robert Bannert and Peter E. Czigler

Acoustic and perceptual effects of vowel length on voice onset time in Thai stops
Chutamanee Onsuwan and Patrice Speeter Beddor
Perception of glottalized consonants in Babine/Witsuwit’en
Katharine Davis and Sharon Hargus

A perceptual experiment on Thai consonant types and tones
Rungpat Roengpitya

The nasal vowels of Iberian Portuguese: Acoustic and aerodynamic properties
Maria João Chaves Galvão

EMG evidence for the automaticity of intrinsic F0 of vowels
D. H. Whalen, Bryan Gick, Masanobu Kumada, and Kiyoshi Honda

Interacting spectral and temporal properties in Jamaican English and Jamaican Creole vowel production
Alicia J. Beckford

The effect of F3 on /U–I/ boundary
Matthew R. Buehler and Anna K. Nábělek

The effect of transition velocity and transition duration on vowel reduction in V1V2 complexes
Pierre L. Divenyi and René Carré

Acoustic correlates of 'devoiced' vowels in standard modern Japanese
J. Kevin Varden

Nasal vibration spectra in vowels
Mechtild Tronnier

Perceived vowel quantity in Swedish: Effects of postvocalic voicing
Dawn M. Behne, Peter E. Czigler, and Kirk P. H. Sullivan

Isolating the critical segment of AE /r/ and /l/ to enhance non-native perception
Reiko Kubo, John S. Pruitt, and Reiko Akahane-Yamada

English vowel production by native speakers of Beijing Mandarin
Xinchun Wang and Murray J. Munro

The effect of immersion on second language productions: The acquisition of American English /r/ and /l/ by Japanese children
Jessica C. Pruitt, Reiko Akahane-Yamada, Reiko Mazuka, and Akiko Hayashi

Modification of L2 vowel production by perception training as evaluated by acoustic analysis and native speakers
Reiko Akahane-Yamada, Winifred Strange, Jessica C. Downs-Pruitt, and Yasushi Masuda

Categorical discrimination of English and Japanese vowels and consonants by native Japanese and English subjects
J. E. Flege, S. G. Guion, R. Akahane-Yamada, and J. Downs-Pruitt

Effects of listener training on intelligibility of Chinese-accented English
Catherine L. Rogers

An instance-based model of Japanese speech recognition by native and non-native listeners
Kiyoko Yoneyama and Keith Johnson

Training American listeners to perceive Mandarin tones: A first report
Yue Wang, Allard Jongman, and Joan A. Sereno

A CALL system for teaching the duration and phone quality of Japanese tokushuhaku
Goh Kawai and Keikichi Hirose

The organization of articulator gestures: A comparison of Swedish, Bulgarian and Greenlandic
Sidney A. J. Wood

The relationship between non-native phoneme perception and the MMN
Janet W. Stack and Susan D. Dalebout

Acquisition of language-specific word-initial unvoiced stops: VOT, intensity, and spectral shape in American English and Swedish
Eugene H. Buder and Carol Stoel-Gammon

The effects of postvocalic voicing on the duration of high front vowels in Swedish and American English: Developmental data
Carol Stoel-Gammon and Eugene H. Buder
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pSC36</td>
<td>Perceptual assimilation of Hindi dental and retroflex stop-consonants by native English and Japanese speakers</td>
<td>John S. Pruitt, Reiko Akahane-Yamada, and Winifred Strange</td>
<td>2991</td>
</tr>
<tr>
<td>5pSC37</td>
<td>Comparison of American English vowel production and identification by native speakers of Luso-Portuguese</td>
<td>Christina F. Famoso, Patricia N. Schwartz, and Adelia DaSilva</td>
<td>2993</td>
</tr>
<tr>
<td>5pSC38</td>
<td>Acoustic analysis of American English vowels by native speakers of Luso-Portuguese</td>
<td>Patricia N. Schwartz, Christina F. Famoso, and Adelia DaSilva</td>
<td>2995</td>
</tr>
<tr>
<td>5pSC39</td>
<td>Comparison of American English vowel production and identification by native speakers of Russian</td>
<td>Fredericka Bell-Berti, Lisa Jayne Romano, and Eugenia Lorin</td>
<td>2997</td>
</tr>
<tr>
<td>5pSC40</td>
<td>Acoustic analysis of American English vowels by native speakers of Russian</td>
<td>Lisa Jayne Romano, Fredericka Bell-Berti, and Eugenia Lorin</td>
<td>2999</td>
</tr>
<tr>
<td>5pSC42</td>
<td>The perception of place of articulation in three coronal nasal contrasts</td>
<td>James D. Harnsberger</td>
<td>3003</td>
</tr>
<tr>
<td>5pSC43</td>
<td>Vowel perception by formant variation</td>
<td>Byunggon Yang</td>
<td>3005</td>
</tr>
<tr>
<td>5pSC44</td>
<td>Cross linguistic evidence for the early acquisition of accent</td>
<td>Rory A. DePaolis and Marilyn May Vihman</td>
<td>3007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5pUW1</td>
<td>Implications of a bi-static treatment for the second echo from a normal incidence sonar</td>
<td>Gary J. Heald and Nicholas G. Pace</td>
<td>3009</td>
</tr>
<tr>
<td>5pUW2</td>
<td>In-plane bistatic calculations of bottom volume reverberation in shallow water</td>
<td>Dale D. Ellis and Paul C. Hines</td>
<td>3011</td>
</tr>
<tr>
<td>5pUW3</td>
<td>A review of the SSA for rough surface scattering</td>
<td>Shiria L. Broschat and Eric I. Thoros</td>
<td>3013</td>
</tr>
<tr>
<td>5pUW4</td>
<td>The lowest-order small slope approximation for rough surface scattering</td>
<td>Eric I. Thoros and Shiria L. Broschat</td>
<td>3015</td>
</tr>
<tr>
<td>5pUW5</td>
<td>The Kirchhoff approximation: A new iterative solution</td>
<td>Suzanne T. McDaniel</td>
<td>3017</td>
</tr>
<tr>
<td>5pUW6</td>
<td>Statistical characteristics of bistatic sea surface scatter</td>
<td>Peter D. Neumann and Richard Lee Culver</td>
<td>3019</td>
</tr>
<tr>
<td>5pUW7</td>
<td>Time dependence in forward scattering—Experimental results and model comparisons derived from sea surface and sea bed bistatic cross-sections</td>
<td>Peter H. Dahl and Kevin L. Williams</td>
<td>3021</td>
</tr>
<tr>
<td>5pUW8</td>
<td>Stacking and averaging techniques for bottom echo characterization</td>
<td>Daniel D. Sternlicht and Christian P. de Moustier</td>
<td>3023</td>
</tr>
<tr>
<td>5pUW9</td>
<td>A comparison of the finite-difference time-domain and integral equation methods for scattering from shallow water sediment bottoms</td>
<td>Frank D. Hastings, John B. Schneider, Shiria L. Broschat, and Eric I. Thoros</td>
<td>3025</td>
</tr>
<tr>
<td>5pUW10</td>
<td>Shallow water in-plane bistatic scattering experiment</td>
<td>D. Vance Crowe, Paul C. Hines, and Patrick J. Barry</td>
<td>3027</td>
</tr>
<tr>
<td>5pUW11</td>
<td>Sediment density inhomogeneity spectra estimated from digital X-radiographs</td>
<td>Dajun Tang and Robert A. Wheatcroft</td>
<td>3029</td>
</tr>
<tr>
<td>5pUW12</td>
<td>Measurements of shallow grazing angle bistatic sea floor scattering on the Florida Atlantic coastal shelf</td>
<td>Tokuo Yamamoto, Christopher M. Day, and Murat Kuru</td>
<td>3031</td>
</tr>
</tbody>
</table>
5pUW13 Analysis of laboratory measurements of sound propagating into an unconsolidated water-saturated porous media. .. 3033
 Harry J. Simpson, Earl G. Williams, and Brian H. Houston
5pUW14 The low frequency radiation and scattering of sound from bubbly mixtures near the sea surface. ... 3035
 William M. Carey and Ronald A. Roy
5pUW15 Inversion of bi-static reverberation and scattering measurements for seabottom properties .. 3037
 Andrew Rogers, Greg Muncill, and Peter Neumann
5pUW16 High frequency sound propagation in shallow water: Focus on rough surface scattering ... 3039
 Xin Tang, Mohsen Badiey, and Jeffrey Simmen
5pUW17 Recent observations of high-frequency acoustic wave propagation in the Delaware Bay .. 3041
 Mohsen Badiey, Jeffrey Simmen, Stephen Forsythe, and Xin Tang